Skip to content
Snippets Groups Projects
transupp.c 41.7 KiB
Newer Older
  • Learn to ignore specific revisions
  • 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
    /*
     * transupp.c
     *
     * Copyright (C) 1997, Thomas G. Lane.
     * This file is part of the Independent JPEG Group's software.
     * For conditions of distribution and use, see the accompanying README file.
     *
     * This file contains image transformation routines and other utility code
     * used by the jpegtran sample application.  These are NOT part of the core
     * JPEG library.  But we keep these routines separate from jpegtran.c to
     * ease the task of maintaining jpegtran-like programs that have other user
     * interfaces.
     */
    
    /* Although this file really shouldn't have access to the library internals,
     * it's helpful to let it call jround_up() and jcopy_block_row().
     */
    #define JPEG_INTERNALS
    
    #include <stddef.h>
    #include <stdlib.h>
    #include <sys/types.h>
    #include <stdio.h>
    
    #include <string.h>
    #define MEMZERO(target,size)  memset((void *)(target), 0, (size_t)(size))
    #define MEMCOPY(dest,src,size)  memcpy((void *)(dest), (const void *)(src), (size_t)(size))
    #define SIZEOF(object)  ((size_t) sizeof(object))
    #define JFREAD(file,buf,sizeofbuf)  \
      ((size_t) fread((void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file)))
    #define JFWRITE(file,buf,sizeofbuf)  \
        ((size_t) fwrite((const void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file)))
    
    
    #include "jpeglib.h"
    #include "transupp.h"		/* My own external interface */
    
    
    #if TRANSFORMS_SUPPORTED
    
    /*
     * Lossless image transformation routines.  These routines work on DCT
     * coefficient arrays and thus do not require any lossy decompression
     * or recompression of the image.
     * Thanks to Guido Vollbeding for the initial design and code of this feature.
     *
     * Horizontal flipping is done in-place, using a single top-to-bottom
     * pass through the virtual source array.  It will thus be much the
     * fastest option for images larger than main memory.
     *
     * The other routines require a set of destination virtual arrays, so they
     * need twice as much memory as jpegtran normally does.  The destination
     * arrays are always written in normal scan order (top to bottom) because
     * the virtual array manager expects this.  The source arrays will be scanned
     * in the corresponding order, which means multiple passes through the source
     * arrays for most of the transforms.  That could result in much thrashing
     * if the image is larger than main memory.
     *
     * Some notes about the operating environment of the individual transform
     * routines:
     * 1. Both the source and destination virtual arrays are allocated from the
     *    source JPEG object, and therefore should be manipulated by calling the
     *    source's memory manager.
     * 2. The destination's component count should be used.  It may be smaller
     *    than the source's when forcing to grayscale.
     * 3. Likewise the destination's sampling factors should be used.  When
     *    forcing to grayscale the destination's sampling factors will be all 1,
     *    and we may as well take that as the effective iMCU size.
     * 4. When "trim" is in effect, the destination's dimensions will be the
     *    trimmed values but the source's will be untrimmed.
     * 5. All the routines assume that the source and destination buffers are
     *    padded out to a full iMCU boundary.  This is true, although for the
     *    source buffer it is an undocumented property of jdcoefct.c.
     * Notes 2,3,4 boil down to this: generally we should use the destination's
     * dimensions and ignore the source's.
     */
    
    
    LOCAL(void)
    do_flip_h (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
    	   jvirt_barray_ptr *src_coef_arrays)
    /* Horizontal flip; done in-place, so no separate dest array is required */
    {
      JDIMENSION MCU_cols, comp_width, blk_x, blk_y;
      int ci, k, offset_y;
      JBLOCKARRAY buffer;
      JCOEFPTR ptr1, ptr2;
      JCOEF temp1, temp2;
      jpeg_component_info *compptr;
    
      /* Horizontal mirroring of DCT blocks is accomplished by swapping
       * pairs of blocks in-place.  Within a DCT block, we perform horizontal
       * mirroring by changing the signs of odd-numbered columns.
       * Partial iMCUs at the right edge are left untouched.
       */
      MCU_cols = dstinfo->image_width / (dstinfo->max_h_samp_factor * DCTSIZE);
    
      for (ci = 0; ci < dstinfo->num_components; ci++) {
        compptr = dstinfo->comp_info + ci;
        comp_width = MCU_cols * compptr->h_samp_factor;
        for (blk_y = 0; blk_y < compptr->height_in_blocks;
    	 blk_y += compptr->v_samp_factor) {
          buffer = (*srcinfo->mem->access_virt_barray)
    	((j_common_ptr) srcinfo, src_coef_arrays[ci], blk_y,
    	 (JDIMENSION) compptr->v_samp_factor, TRUE);
          for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
    	for (blk_x = 0; blk_x * 2 < comp_width; blk_x++) {
    	  ptr1 = buffer[offset_y][blk_x];
    	  ptr2 = buffer[offset_y][comp_width - blk_x - 1];
    	  /* this unrolled loop doesn't need to know which row it's on... */
    	  for (k = 0; k < DCTSIZE2; k += 2) {
    	    temp1 = *ptr1;	/* swap even column */
    	    temp2 = *ptr2;
    	    *ptr1++ = temp2;
    	    *ptr2++ = temp1;
    	    temp1 = *ptr1;	/* swap odd column with sign change */
    	    temp2 = *ptr2;
    	    *ptr1++ = -temp2;
    	    *ptr2++ = -temp1;
    	  }
    	}
          }
        }
      }
    }
    
    
    LOCAL(void)
    do_flip_v (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
    	   jvirt_barray_ptr *src_coef_arrays,
    	   jvirt_barray_ptr *dst_coef_arrays)
    /* Vertical flip */
    {
      JDIMENSION MCU_rows, comp_height, dst_blk_x, dst_blk_y;
      int ci, i, j, offset_y;
      JBLOCKARRAY src_buffer, dst_buffer;
      JBLOCKROW src_row_ptr, dst_row_ptr;
      JCOEFPTR src_ptr, dst_ptr;
      jpeg_component_info *compptr;
    
      /* We output into a separate array because we can't touch different
       * rows of the source virtual array simultaneously.  Otherwise, this
       * is a pretty straightforward analog of horizontal flip.
       * Within a DCT block, vertical mirroring is done by changing the signs
       * of odd-numbered rows.
       * Partial iMCUs at the bottom edge are copied verbatim.
       */
      MCU_rows = dstinfo->image_height / (dstinfo->max_v_samp_factor * DCTSIZE);
    
      for (ci = 0; ci < dstinfo->num_components; ci++) {
        compptr = dstinfo->comp_info + ci;
        comp_height = MCU_rows * compptr->v_samp_factor;
        for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
    	 dst_blk_y += compptr->v_samp_factor) {
          dst_buffer = (*srcinfo->mem->access_virt_barray)
    	((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
    	 (JDIMENSION) compptr->v_samp_factor, TRUE);
          if (dst_blk_y < comp_height) {
    	/* Row is within the mirrorable area. */
    	src_buffer = (*srcinfo->mem->access_virt_barray)
    	  ((j_common_ptr) srcinfo, src_coef_arrays[ci],
    	   comp_height - dst_blk_y - (JDIMENSION) compptr->v_samp_factor,
    	   (JDIMENSION) compptr->v_samp_factor, FALSE);
          } else {
    	/* Bottom-edge blocks will be copied verbatim. */
    	src_buffer = (*srcinfo->mem->access_virt_barray)
    	  ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_y,
    	   (JDIMENSION) compptr->v_samp_factor, FALSE);
          }
          for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
    	if (dst_blk_y < comp_height) {
    	  /* Row is within the mirrorable area. */
    	  dst_row_ptr = dst_buffer[offset_y];
    	  src_row_ptr = src_buffer[compptr->v_samp_factor - offset_y - 1];
    	  for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks;
    	       dst_blk_x++) {
    	    dst_ptr = dst_row_ptr[dst_blk_x];
    	    src_ptr = src_row_ptr[dst_blk_x];
    	    for (i = 0; i < DCTSIZE; i += 2) {
    	      /* copy even row */
    	      for (j = 0; j < DCTSIZE; j++)
    		*dst_ptr++ = *src_ptr++;
    	      /* copy odd row with sign change */
    	      for (j = 0; j < DCTSIZE; j++)
    		*dst_ptr++ = - *src_ptr++;
    	    }
    	  }
    	} else {
    	  /* Just copy row verbatim. */
    	  jcopy_block_row(src_buffer[offset_y], dst_buffer[offset_y],
    			  compptr->width_in_blocks);
    	}
          }
        }
      }
    }
    
    
    LOCAL(void)
    do_transpose (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
    	      jvirt_barray_ptr *src_coef_arrays,
    	      jvirt_barray_ptr *dst_coef_arrays)
    /* Transpose source into destination */
    {
      JDIMENSION dst_blk_x, dst_blk_y;
      int ci, i, j, offset_x, offset_y;
      JBLOCKARRAY src_buffer, dst_buffer;
      JCOEFPTR src_ptr, dst_ptr;
      jpeg_component_info *compptr;
    
      /* Transposing pixels within a block just requires transposing the
       * DCT coefficients.
       * Partial iMCUs at the edges require no special treatment; we simply
       * process all the available DCT blocks for every component.
       */
      for (ci = 0; ci < dstinfo->num_components; ci++) {
        compptr = dstinfo->comp_info + ci;
        for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
    	 dst_blk_y += compptr->v_samp_factor) {
          dst_buffer = (*srcinfo->mem->access_virt_barray)
    	((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
    	 (JDIMENSION) compptr->v_samp_factor, TRUE);
          for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
    	for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks;
    	     dst_blk_x += compptr->h_samp_factor) {
    	  src_buffer = (*srcinfo->mem->access_virt_barray)
    	    ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_x,
    	     (JDIMENSION) compptr->h_samp_factor, FALSE);
    	  for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) {
    	    src_ptr = src_buffer[offset_x][dst_blk_y + offset_y];
    	    dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x];
    	    for (i = 0; i < DCTSIZE; i++)
    	      for (j = 0; j < DCTSIZE; j++)
    		dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
    	  }
    	}
          }
        }
      }
    }
    
    
    LOCAL(void)
    do_rot_90 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
    	   jvirt_barray_ptr *src_coef_arrays,
    	   jvirt_barray_ptr *dst_coef_arrays)
    /* 90 degree rotation is equivalent to
     *   1. Transposing the image;
     *   2. Horizontal mirroring.
     * These two steps are merged into a single processing routine.
     */
    {
      JDIMENSION MCU_cols, comp_width, dst_blk_x, dst_blk_y;
      int ci, i, j, offset_x, offset_y;
      JBLOCKARRAY src_buffer, dst_buffer;
      JCOEFPTR src_ptr, dst_ptr;
      jpeg_component_info *compptr;
    
      /* Because of the horizontal mirror step, we can't process partial iMCUs
       * at the (output) right edge properly.  They just get transposed and
       * not mirrored.
       */
      MCU_cols = dstinfo->image_width / (dstinfo->max_h_samp_factor * DCTSIZE);
    
      for (ci = 0; ci < dstinfo->num_components; ci++) {
        compptr = dstinfo->comp_info + ci;
        comp_width = MCU_cols * compptr->h_samp_factor;
        for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
    	 dst_blk_y += compptr->v_samp_factor) {
          dst_buffer = (*srcinfo->mem->access_virt_barray)
    	((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
    	 (JDIMENSION) compptr->v_samp_factor, TRUE);
          for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
    	for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks;
    	     dst_blk_x += compptr->h_samp_factor) {
    	  src_buffer = (*srcinfo->mem->access_virt_barray)
    	    ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_x,
    	     (JDIMENSION) compptr->h_samp_factor, FALSE);
    	  for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) {
    	    src_ptr = src_buffer[offset_x][dst_blk_y + offset_y];
    	    if (dst_blk_x < comp_width) {
    	      /* Block is within the mirrorable area. */
    	      dst_ptr = dst_buffer[offset_y]
    		[comp_width - dst_blk_x - offset_x - 1];
    	      for (i = 0; i < DCTSIZE; i++) {
    		for (j = 0; j < DCTSIZE; j++)
    		  dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
    		i++;
    		for (j = 0; j < DCTSIZE; j++)
    		  dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
    	      }
    	    } else {
    	      /* Edge blocks are transposed but not mirrored. */
    	      dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x];
    	      for (i = 0; i < DCTSIZE; i++)
    		for (j = 0; j < DCTSIZE; j++)
    		  dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
    	    }
    	  }
    	}
          }
        }
      }
    }
    
    
    LOCAL(void)
    do_rot_270 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
    	    jvirt_barray_ptr *src_coef_arrays,
    	    jvirt_barray_ptr *dst_coef_arrays)
    /* 270 degree rotation is equivalent to
     *   1. Horizontal mirroring;
     *   2. Transposing the image.
     * These two steps are merged into a single processing routine.
     */
    {
      JDIMENSION MCU_rows, comp_height, dst_blk_x, dst_blk_y;
      int ci, i, j, offset_x, offset_y;
      JBLOCKARRAY src_buffer, dst_buffer;
      JCOEFPTR src_ptr, dst_ptr;
      jpeg_component_info *compptr;
    
      /* Because of the horizontal mirror step, we can't process partial iMCUs
       * at the (output) bottom edge properly.  They just get transposed and
       * not mirrored.
       */
      MCU_rows = dstinfo->image_height / (dstinfo->max_v_samp_factor * DCTSIZE);
    
      for (ci = 0; ci < dstinfo->num_components; ci++) {
        compptr = dstinfo->comp_info + ci;
        comp_height = MCU_rows * compptr->v_samp_factor;
        for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
    	 dst_blk_y += compptr->v_samp_factor) {
          dst_buffer = (*srcinfo->mem->access_virt_barray)
    	((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
    	 (JDIMENSION) compptr->v_samp_factor, TRUE);
          for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
    	for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks;
    	     dst_blk_x += compptr->h_samp_factor) {
    	  src_buffer = (*srcinfo->mem->access_virt_barray)
    	    ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_x,
    	     (JDIMENSION) compptr->h_samp_factor, FALSE);
    	  for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) {
    	    dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x];
    	    if (dst_blk_y < comp_height) {
    	      /* Block is within the mirrorable area. */
    	      src_ptr = src_buffer[offset_x]
    		[comp_height - dst_blk_y - offset_y - 1];
    	      for (i = 0; i < DCTSIZE; i++) {
    		for (j = 0; j < DCTSIZE; j++) {
    		  dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
    		  j++;
    		  dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
    		}
    	      }
    	    } else {
    	      /* Edge blocks are transposed but not mirrored. */
    	      src_ptr = src_buffer[offset_x][dst_blk_y + offset_y];
    	      for (i = 0; i < DCTSIZE; i++)
    		for (j = 0; j < DCTSIZE; j++)
    		  dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
    	    }
    	  }
    	}
          }
        }
      }
    }
    
    
    LOCAL(void)
    do_rot_180 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
    	    jvirt_barray_ptr *src_coef_arrays,
    	    jvirt_barray_ptr *dst_coef_arrays)
    /* 180 degree rotation is equivalent to
     *   1. Vertical mirroring;
     *   2. Horizontal mirroring.
     * These two steps are merged into a single processing routine.
     */
    {
      JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height, dst_blk_x, dst_blk_y;
      int ci, i, j, offset_y;
      JBLOCKARRAY src_buffer, dst_buffer;
      JBLOCKROW src_row_ptr, dst_row_ptr;
      JCOEFPTR src_ptr, dst_ptr;
      jpeg_component_info *compptr;
    
      MCU_cols = dstinfo->image_width / (dstinfo->max_h_samp_factor * DCTSIZE);
      MCU_rows = dstinfo->image_height / (dstinfo->max_v_samp_factor * DCTSIZE);
    
      for (ci = 0; ci < dstinfo->num_components; ci++) {
        compptr = dstinfo->comp_info + ci;
        comp_width = MCU_cols * compptr->h_samp_factor;
        comp_height = MCU_rows * compptr->v_samp_factor;
        for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
    	 dst_blk_y += compptr->v_samp_factor) {
          dst_buffer = (*srcinfo->mem->access_virt_barray)
    	((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
    	 (JDIMENSION) compptr->v_samp_factor, TRUE);
          if (dst_blk_y < comp_height) {
    	/* Row is within the vertically mirrorable area. */
    	src_buffer = (*srcinfo->mem->access_virt_barray)
    	  ((j_common_ptr) srcinfo, src_coef_arrays[ci],
    	   comp_height - dst_blk_y - (JDIMENSION) compptr->v_samp_factor,
    	   (JDIMENSION) compptr->v_samp_factor, FALSE);
          } else {
    	/* Bottom-edge rows are only mirrored horizontally. */
    	src_buffer = (*srcinfo->mem->access_virt_barray)
    	  ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_y,
    	   (JDIMENSION) compptr->v_samp_factor, FALSE);
          }
          for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
    	if (dst_blk_y < comp_height) {
    	  /* Row is within the mirrorable area. */
    	  dst_row_ptr = dst_buffer[offset_y];
    	  src_row_ptr = src_buffer[compptr->v_samp_factor - offset_y - 1];
    	  /* Process the blocks that can be mirrored both ways. */
    	  for (dst_blk_x = 0; dst_blk_x < comp_width; dst_blk_x++) {
    	    dst_ptr = dst_row_ptr[dst_blk_x];
    	    src_ptr = src_row_ptr[comp_width - dst_blk_x - 1];
    	    for (i = 0; i < DCTSIZE; i += 2) {
    	      /* For even row, negate every odd column. */
    	      for (j = 0; j < DCTSIZE; j += 2) {
    		*dst_ptr++ = *src_ptr++;
    		*dst_ptr++ = - *src_ptr++;
    	      }
    	      /* For odd row, negate every even column. */
    	      for (j = 0; j < DCTSIZE; j += 2) {
    		*dst_ptr++ = - *src_ptr++;
    		*dst_ptr++ = *src_ptr++;
    	      }
    	    }
    	  }
    	  /* Any remaining right-edge blocks are only mirrored vertically. */
    	  for (; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) {
    	    dst_ptr = dst_row_ptr[dst_blk_x];
    	    src_ptr = src_row_ptr[dst_blk_x];
    	    for (i = 0; i < DCTSIZE; i += 2) {
    	      for (j = 0; j < DCTSIZE; j++)
    		*dst_ptr++ = *src_ptr++;
    	      for (j = 0; j < DCTSIZE; j++)
    		*dst_ptr++ = - *src_ptr++;
    	    }
    	  }
    	} else {
    	  /* Remaining rows are just mirrored horizontally. */
    	  dst_row_ptr = dst_buffer[offset_y];
    	  src_row_ptr = src_buffer[offset_y];
    	  /* Process the blocks that can be mirrored. */
    	  for (dst_blk_x = 0; dst_blk_x < comp_width; dst_blk_x++) {
    	    dst_ptr = dst_row_ptr[dst_blk_x];
    	    src_ptr = src_row_ptr[comp_width - dst_blk_x - 1];
    	    for (i = 0; i < DCTSIZE2; i += 2) {
    	      *dst_ptr++ = *src_ptr++;
    	      *dst_ptr++ = - *src_ptr++;
    	    }
    	  }
    	  /* Any remaining right-edge blocks are only copied. */
    	  for (; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) {
    	    dst_ptr = dst_row_ptr[dst_blk_x];
    	    src_ptr = src_row_ptr[dst_blk_x];
    	    for (i = 0; i < DCTSIZE2; i++)
    	      *dst_ptr++ = *src_ptr++;
    	  }
    	}
          }
        }
      }
    }
    
    
    LOCAL(void)
    do_transverse (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
    	       jvirt_barray_ptr *src_coef_arrays,
    	       jvirt_barray_ptr *dst_coef_arrays)
    /* Transverse transpose is equivalent to
     *   1. 180 degree rotation;
     *   2. Transposition;
     * or
     *   1. Horizontal mirroring;
     *   2. Transposition;
     *   3. Horizontal mirroring.
     * These steps are merged into a single processing routine.
     */
    {
      JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height, dst_blk_x, dst_blk_y;
      int ci, i, j, offset_x, offset_y;
      JBLOCKARRAY src_buffer, dst_buffer;
      JCOEFPTR src_ptr, dst_ptr;
      jpeg_component_info *compptr;
    
      MCU_cols = dstinfo->image_width / (dstinfo->max_h_samp_factor * DCTSIZE);
      MCU_rows = dstinfo->image_height / (dstinfo->max_v_samp_factor * DCTSIZE);
    
      for (ci = 0; ci < dstinfo->num_components; ci++) {
        compptr = dstinfo->comp_info + ci;
        comp_width = MCU_cols * compptr->h_samp_factor;
        comp_height = MCU_rows * compptr->v_samp_factor;
        for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
    	 dst_blk_y += compptr->v_samp_factor) {
          dst_buffer = (*srcinfo->mem->access_virt_barray)
    	((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
    	 (JDIMENSION) compptr->v_samp_factor, TRUE);
          for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
    	for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks;
    	     dst_blk_x += compptr->h_samp_factor) {
    	  src_buffer = (*srcinfo->mem->access_virt_barray)
    	    ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_x,
    	     (JDIMENSION) compptr->h_samp_factor, FALSE);
    	  for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) {
    	    if (dst_blk_y < comp_height) {
    	      src_ptr = src_buffer[offset_x]
    		[comp_height - dst_blk_y - offset_y - 1];
    	      if (dst_blk_x < comp_width) {
    		/* Block is within the mirrorable area. */
    		dst_ptr = dst_buffer[offset_y]
    		  [comp_width - dst_blk_x - offset_x - 1];
    		for (i = 0; i < DCTSIZE; i++) {
    		  for (j = 0; j < DCTSIZE; j++) {
    		    dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
    		    j++;
    		    dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
    		  }
    		  i++;
    		  for (j = 0; j < DCTSIZE; j++) {
    		    dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
    		    j++;
    		    dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
    		  }
    		}
    	      } else {
    		/* Right-edge blocks are mirrored in y only */
    		dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x];
    		for (i = 0; i < DCTSIZE; i++) {
    		  for (j = 0; j < DCTSIZE; j++) {
    		    dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
    		    j++;
    		    dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
    		  }
    		}
    	      }
    	    } else {
    	      src_ptr = src_buffer[offset_x][dst_blk_y + offset_y];
    	      if (dst_blk_x < comp_width) {
    		/* Bottom-edge blocks are mirrored in x only */
    		dst_ptr = dst_buffer[offset_y]
    		  [comp_width - dst_blk_x - offset_x - 1];
    		for (i = 0; i < DCTSIZE; i++) {
    		  for (j = 0; j < DCTSIZE; j++)
    		    dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
    		  i++;
    		  for (j = 0; j < DCTSIZE; j++)
    		    dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
    		}
    	      } else {
    		/* At lower right corner, just transpose, no mirroring */
    		dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x];
    		for (i = 0; i < DCTSIZE; i++)
    		  for (j = 0; j < DCTSIZE; j++)
    		    dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
    	      }
    	    }
    	  }
    	}
          }
        }
      }
    }
    
    
    /* Request any required workspace.
     *
     * We allocate the workspace virtual arrays from the source decompression
     * object, so that all the arrays (both the original data and the workspace)
     * will be taken into account while making memory management decisions.
     * Hence, this routine must be called after jpeg_read_header (which reads
     * the image dimensions) and before jpeg_read_coefficients (which realizes
     * the source's virtual arrays).
     */
    
    GLOBAL(void)
    jtransform_request_workspace (j_decompress_ptr srcinfo,
    			      jpeg_transform_info *info)
    {
      jvirt_barray_ptr *coef_arrays = NULL;
      jpeg_component_info *compptr;
      int ci;
    
      if (info->force_grayscale &&
          srcinfo->jpeg_color_space == JCS_YCbCr &&
          srcinfo->num_components == 3) {
        /* We'll only process the first component */
        info->num_components = 1;
      } else {
        /* Process all the components */
        info->num_components = srcinfo->num_components;
      }
    
      switch (info->transform) {
      case JXFORM_NONE:
      case JXFORM_FLIP_H:
        /* Don't need a workspace array */
        break;
      case JXFORM_FLIP_V:
      case JXFORM_ROT_180:
        /* Need workspace arrays having same dimensions as source image.
         * Note that we allocate arrays padded out to the next iMCU boundary,
         * so that transform routines need not worry about missing edge blocks.
         */
        coef_arrays = (jvirt_barray_ptr *)
          (*srcinfo->mem->alloc_small) ((j_common_ptr) srcinfo, JPOOL_IMAGE,
    	SIZEOF(jvirt_barray_ptr) * info->num_components);
        for (ci = 0; ci < info->num_components; ci++) {
          compptr = srcinfo->comp_info + ci;
          coef_arrays[ci] = (*srcinfo->mem->request_virt_barray)
    	((j_common_ptr) srcinfo, JPOOL_IMAGE, FALSE,
    	 (JDIMENSION) jround_up((long) compptr->width_in_blocks,
    				(long) compptr->h_samp_factor),
    	 (JDIMENSION) jround_up((long) compptr->height_in_blocks,
    				(long) compptr->v_samp_factor),
    	 (JDIMENSION) compptr->v_samp_factor);
        }
        break;
      case JXFORM_TRANSPOSE:
      case JXFORM_TRANSVERSE:
      case JXFORM_ROT_90:
      case JXFORM_ROT_270:
        /* Need workspace arrays having transposed dimensions.
         * Note that we allocate arrays padded out to the next iMCU boundary,
         * so that transform routines need not worry about missing edge blocks.
         */
        coef_arrays = (jvirt_barray_ptr *)
          (*srcinfo->mem->alloc_small) ((j_common_ptr) srcinfo, JPOOL_IMAGE,
    	SIZEOF(jvirt_barray_ptr) * info->num_components);
        for (ci = 0; ci < info->num_components; ci++) {
          compptr = srcinfo->comp_info + ci;
          coef_arrays[ci] = (*srcinfo->mem->request_virt_barray)
    	((j_common_ptr) srcinfo, JPOOL_IMAGE, FALSE,
    	 (JDIMENSION) jround_up((long) compptr->height_in_blocks,
    				(long) compptr->v_samp_factor),
    	 (JDIMENSION) jround_up((long) compptr->width_in_blocks,
    				(long) compptr->h_samp_factor),
    	 (JDIMENSION) compptr->h_samp_factor);
        }
        break;
      }
      info->workspace_coef_arrays = coef_arrays;
    }
    
    
    /* Transpose destination image parameters */
    
    LOCAL(void)
    transpose_critical_parameters (j_compress_ptr dstinfo)
    {
      int tblno, i, j, ci, itemp;
      jpeg_component_info *compptr;
      JQUANT_TBL *qtblptr;
      JDIMENSION dtemp;
      UINT16 qtemp;
    
      /* Transpose basic image dimensions */
      dtemp = dstinfo->image_width;
      dstinfo->image_width = dstinfo->image_height;
      dstinfo->image_height = dtemp;
    
      /* Transpose sampling factors */
      for (ci = 0; ci < dstinfo->num_components; ci++) {
        compptr = dstinfo->comp_info + ci;
        itemp = compptr->h_samp_factor;
        compptr->h_samp_factor = compptr->v_samp_factor;
        compptr->v_samp_factor = itemp;
      }
    
      /* Transpose quantization tables */
      for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) {
        qtblptr = dstinfo->quant_tbl_ptrs[tblno];
        if (qtblptr != NULL) {
          for (i = 0; i < DCTSIZE; i++) {
    	for (j = 0; j < i; j++) {
    	  qtemp = qtblptr->quantval[i*DCTSIZE+j];
    	  qtblptr->quantval[i*DCTSIZE+j] = qtblptr->quantval[j*DCTSIZE+i];
    	  qtblptr->quantval[j*DCTSIZE+i] = qtemp;
    	}
          }
        }
      }
    }
    
    
    /* Trim off any partial iMCUs on the indicated destination edge */
    
    LOCAL(void)
    trim_right_edge (j_compress_ptr dstinfo)
    {
      int ci, max_h_samp_factor;
      JDIMENSION MCU_cols;
    
      /* We have to compute max_h_samp_factor ourselves,
       * because it hasn't been set yet in the destination
       * (and we don't want to use the source's value).
       */
      max_h_samp_factor = 1;
      for (ci = 0; ci < dstinfo->num_components; ci++) {
        int h_samp_factor = dstinfo->comp_info[ci].h_samp_factor;
        max_h_samp_factor = MAX(max_h_samp_factor, h_samp_factor);
      }
      MCU_cols = dstinfo->image_width / (max_h_samp_factor * DCTSIZE);
      if (MCU_cols > 0)		/* can't trim to 0 pixels */
        dstinfo->image_width = MCU_cols * (max_h_samp_factor * DCTSIZE);
    }
    
    LOCAL(void)
    trim_bottom_edge (j_compress_ptr dstinfo)
    {
      int ci, max_v_samp_factor;
      JDIMENSION MCU_rows;
    
      /* We have to compute max_v_samp_factor ourselves,
       * because it hasn't been set yet in the destination
       * (and we don't want to use the source's value).
       */
      max_v_samp_factor = 1;
      for (ci = 0; ci < dstinfo->num_components; ci++) {
        int v_samp_factor = dstinfo->comp_info[ci].v_samp_factor;
        max_v_samp_factor = MAX(max_v_samp_factor, v_samp_factor);
      }
      MCU_rows = dstinfo->image_height / (max_v_samp_factor * DCTSIZE);
      if (MCU_rows > 0)		/* can't trim to 0 pixels */
        dstinfo->image_height = MCU_rows * (max_v_samp_factor * DCTSIZE);
    }
    
    LOCAL(void)
    set_exif_orientation (JOCTET FAR * data, unsigned int length,
    			unsigned char new_orient)
    {
      boolean is_motorola; /* Flag for byte order */
      unsigned int number_of_tags, tagnum;
      unsigned int firstoffset, offset;
    
      if (length < 12) return; /* Length of an IFD entry */
    
      /* Discover byte order */
      if (GETJOCTET(data[0]) == 0x49 && GETJOCTET(data[1]) == 0x49)
        is_motorola = FALSE;
      else if (GETJOCTET(data[0]) == 0x4D && GETJOCTET(data[1]) == 0x4D)
        is_motorola = TRUE;
      else
        return;
    
      /* Check Tag Mark */
      if (is_motorola) {
        if (GETJOCTET(data[2]) != 0) return;
        if (GETJOCTET(data[3]) != 0x2A) return;
      } else {
        if (GETJOCTET(data[3]) != 0) return;
        if (GETJOCTET(data[2]) != 0x2A) return;
      }
    
      /* Get first IFD offset (offset to IFD0) */
      if (is_motorola) {
        if (GETJOCTET(data[4]) != 0) return;
        if (GETJOCTET(data[5]) != 0) return;
        firstoffset = GETJOCTET(data[6]);
        firstoffset <<= 8;
        firstoffset += GETJOCTET(data[7]);
      } else {
        if (GETJOCTET(data[7]) != 0) return;
        if (GETJOCTET(data[6]) != 0) return;
        firstoffset = GETJOCTET(data[5]);
        firstoffset <<= 8;
        firstoffset += GETJOCTET(data[4]);
      }
      if (firstoffset > length - 2) return; /* check end of data segment */
    
      /* Get the number of directory entries contained in this IFD */
      if (is_motorola) {
        number_of_tags = GETJOCTET(data[firstoffset]);
        number_of_tags <<= 8;
        number_of_tags += GETJOCTET(data[firstoffset+1]);
      } else {
        number_of_tags = GETJOCTET(data[firstoffset+1]);
        number_of_tags <<= 8;
        number_of_tags += GETJOCTET(data[firstoffset]);
      }
      if (number_of_tags == 0) return;
      firstoffset += 2;
    
      /* Search for Orientation offset Tag in IFD0 */
      for (;;) {
        if (firstoffset > length - 12) return; /* check end of data segment */
        /* Get Tag number */
        if (is_motorola) {
          tagnum = GETJOCTET(data[firstoffset]);
          tagnum <<= 8;
          tagnum += GETJOCTET(data[firstoffset+1]);
        } else {
          tagnum = GETJOCTET(data[firstoffset+1]);
          tagnum <<= 8;
          tagnum += GETJOCTET(data[firstoffset]);
        }
        if (tagnum == 0x0112) break; /* found Orientation Tag */
        if (--number_of_tags == 0) return;
        firstoffset += 12;
      }
    
      if (is_motorola) {
        data[firstoffset+2] = 0; /* Format = unsigned short (2 octets) */
        data[firstoffset+3] = 3;
        data[firstoffset+4] = 0; /* Number Of Components = 1 */
        data[firstoffset+5] = 0;
        data[firstoffset+6] = 0;
        data[firstoffset+7] = 1;
        data[firstoffset+8] = 0;
        data[firstoffset+9] = (unsigned char) new_orient;
        data[firstoffset+10] = 0;
        data[firstoffset+11] = 0;
      } else {
        data[firstoffset+2] = 3; /* Format = unsigned short (2 octets) */
        data[firstoffset+3] = 0;
        data[firstoffset+4] = 1; /* Number Of Components = 1 */
        data[firstoffset+5] = 0;
        data[firstoffset+6] = 0;
        data[firstoffset+7] = 0;
        data[firstoffset+8] = (unsigned char) new_orient;
        data[firstoffset+9] = 0;
        data[firstoffset+10] = 0;
        data[firstoffset+11] = 0;
      }
    }
    
    /* Adjust Exif image parameters.
     *
     * We try to adjust the Tags ExifImageWidth and ExifImageHeight if possible.
     */
    
    LOCAL(void)
    adjust_exif_parameters (JOCTET FAR * data, unsigned int length,
    			JDIMENSION new_width, JDIMENSION new_height)
    {
      boolean is_motorola; /* Flag for byte order */
      unsigned int number_of_tags, tagnum;
      unsigned int firstoffset, offset;
      unsigned int new_orient;
      JDIMENSION new_value;
    
      if (length < 12) return; /* Length of an IFD entry */
    
      /* Discover byte order */
      if (GETJOCTET(data[0]) == 0x49 && GETJOCTET(data[1]) == 0x49)
        is_motorola = FALSE;
      else if (GETJOCTET(data[0]) == 0x4D && GETJOCTET(data[1]) == 0x4D)
        is_motorola = TRUE;
      else
        return;
    
      /* Check Tag Mark */
      if (is_motorola) {
        if (GETJOCTET(data[2]) != 0) return;
        if (GETJOCTET(data[3]) != 0x2A) return;
      } else {
        if (GETJOCTET(data[3]) != 0) return;
        if (GETJOCTET(data[2]) != 0x2A) return;
      }
    
      /* Get first IFD offset (offset to IFD0) */
      if (is_motorola) {
        if (GETJOCTET(data[4]) != 0) return;
        if (GETJOCTET(data[5]) != 0) return;
        firstoffset = GETJOCTET(data[6]);
        firstoffset <<= 8;
        firstoffset += GETJOCTET(data[7]);
      } else {
        if (GETJOCTET(data[7]) != 0) return;
        if (GETJOCTET(data[6]) != 0) return;
        firstoffset = GETJOCTET(data[5]);
        firstoffset <<= 8;
        firstoffset += GETJOCTET(data[4]);
      }
      if (firstoffset > length - 2) return; /* check end of data segment */
    
      /* Get the number of directory entries contained in this IFD */
      if (is_motorola) {
        number_of_tags = GETJOCTET(data[firstoffset]);
        number_of_tags <<= 8;
        number_of_tags += GETJOCTET(data[firstoffset+1]);
      } else {
        number_of_tags = GETJOCTET(data[firstoffset+1]);
        number_of_tags <<= 8;
        number_of_tags += GETJOCTET(data[firstoffset]);
      }
      if (number_of_tags == 0) return;
      firstoffset += 2;
    
      /* Search for ExifSubIFD offset Tag in IFD0 */
      for (;;) {
        if (firstoffset > length - 12) return; /* check end of data segment */
        /* Get Tag number */
        if (is_motorola) {
          tagnum = GETJOCTET(data[firstoffset]);
          tagnum <<= 8;
          tagnum += GETJOCTET(data[firstoffset+1]);
        } else {
          tagnum = GETJOCTET(data[firstoffset+1]);
          tagnum <<= 8;
          tagnum += GETJOCTET(data[firstoffset]);
        }
        if (tagnum == 0x8769) break; /* found ExifSubIFD offset Tag */
        if (--number_of_tags == 0) return;
        firstoffset += 12;
      }
    
      /* Get the ExifSubIFD offset */
      if (is_motorola) {
        if (GETJOCTET(data[firstoffset+8]) != 0) return;
        if (GETJOCTET(data[firstoffset+9]) != 0) return;
        offset = GETJOCTET(data[firstoffset+10]);
        offset <<= 8;
        offset += GETJOCTET(data[firstoffset+11]);
      } else {
        if (GETJOCTET(data[firstoffset+11]) != 0) return;
        if (GETJOCTET(data[firstoffset+10]) != 0) return;
        offset = GETJOCTET(data[firstoffset+9]);
        offset <<= 8;
        offset += GETJOCTET(data[firstoffset+8]);
      }
      if (offset > length - 2) return; /* check end of data segment */
    
      /* Get the number of directory entries contained in this SubIFD */
      if (is_motorola) {
        number_of_tags = GETJOCTET(data[offset]);
        number_of_tags <<= 8;
        number_of_tags += GETJOCTET(data[offset+1]);
      } else {
        number_of_tags = GETJOCTET(data[offset+1]);
        number_of_tags <<= 8;
        number_of_tags += GETJOCTET(data[offset]);
      }
      if (number_of_tags < 2) return;
      offset += 2;
    
      /* Search for ExifImageWidth and ExifImageHeight Tags in this SubIFD */
      do {
        if (offset > length - 12) return; /* check end of data segment */
        /* Get Tag number */
        if (is_motorola) {
          tagnum = GETJOCTET(data[offset]);
          tagnum <<= 8;
          tagnum += GETJOCTET(data[offset+1]);
        } else {
          tagnum = GETJOCTET(data[offset+1]);
          tagnum <<= 8;
          tagnum += GETJOCTET(data[offset]);
        }
        if (tagnum == 0xA002 || tagnum == 0xA003) {
          if (tagnum == 0xA002) {
    	new_value = new_width; /* ExifImageWidth Tag */
          } else {
    	new_value = new_height; /* ExifImageHeight Tag */
          }
          if (is_motorola) {
    	data[offset+2] = 0; /* Format = unsigned long (4 octets) */
    	data[offset+3] = 4;
    	data[offset+4] = 0; /* Number Of Components = 1 */
    	data[offset+5] = 0;
    	data[offset+6] = 0;
    	data[offset+7] = 1;
    	data[offset+8] = 0;
    	data[offset+9] = 0;
    	data[offset+10] = (JOCTET)((new_value >> 8) & 0xFF);
    	data[offset+11] = (JOCTET)(new_value & 0xFF);
          } else {
    	data[offset+2] = 4; /* Format = unsigned long (4 octets) */
    	data[offset+3] = 0;
    	data[offset+4] = 1; /* Number Of Components = 1 */
    	data[offset+5] = 0;
    	data[offset+6] = 0;
    	data[offset+7] = 0;
    	data[offset+8] = (JOCTET)(new_value & 0xFF);
    	data[offset+9] = (JOCTET)((new_value >> 8) & 0xFF);
    	data[offset+10] = 0;
    	data[offset+11] = 0;
          }
        }
        offset += 12;
      } while (--number_of_tags);
    }
    
    
    /* Adjust output image parameters as needed.
     *
     * This must be called after jpeg_copy_critical_parameters()
     * and before jpeg_write_coefficients().
     *
     * The return value is the set of virtual coefficient arrays to be written
     * (either the ones allocated by jtransform_request_workspace, or the
     * original source data arrays).  The caller will need to pass this value
     * to jpeg_write_coefficients().
     */