Newer
Older
/*
* Copyright 2021 Daniel Friesel
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include "arch.h"
#include "driver/gpio.h"
#include "driver/stdout.h"
#if defined(MULTIPASS_ARCH_HAS_I2C) && !defined(DRIVER_SOFTI2C)
#include "driver/i2c.h"
#else
#include "driver/soft_i2c.h"
#endif
#include "driver/bme680.h"
#include "driver/bme680_util.h"
#include "driver/max44009.h"
#ifdef MULTIPASS_ARCH_arduino_nano
#define POWER_PIN GPIO::pc3
#endif
struct bme680_field_data data;
float lux;
int8_t bme680_status;
void loop(void)
{
static unsigned char i = 0;
if (lux >= 0 && bme680_status == 0) {
gpio.led_off(0);
} else {
gpio.led_on(0);
}
#ifdef POWER_PIN
if (lux < 0 || bme680_status != 0) {
if (i == 18) {
kout << "# Cycling power to I2C clients" << endl;
gpio.write(POWER_PIN, 0);
} else if (i == 19) {
gpio.write(POWER_PIN, 1);
}
}
#endif
#ifdef MULTIPASS_ARCH_arduino_nano
if ((i == 1) && (ADCSRA & _BV(ADIF))) {
uint8_t adcr_l = ADCL;
uint8_t adcr_h = ADCH;
uint16_t adcr = adcr_l + (adcr_h << 8);
uint16_t vcc = 1100L * 1023 / adcr;
TIFR1 |= _BV(TOV1);
ADCSRA |= _BV(ADIF);
kout << "VCC: " << vcc << endl;
}
#endif
if (i == 0) {
lux = max44009.getLux();
if (lux >= 0) {
kout << "MAX44009: ";
kout.printf_float(max44009.getLux());
kout << " lx" << endl;
} else {
kout << "# MAX44009 error" << endl;
}
}
bme680_status = bme680.init();
kout << "BME680 init " << bme680_status << endl;
bme680.power_mode = BME680_FORCED_MODE;
bme680.tph_sett.os_hum = BME680_OS_2X;
bme680.tph_sett.os_pres = BME680_OS_16X;
bme680.tph_sett.os_temp = BME680_OS_2X;
bme680.gas_sett.run_gas = BME680_ENABLE_GAS_MEAS;
bme680.gas_sett.heatr_dur = 100;
bme680.gas_sett.heatr_temp = 300;
bme680.setSensorSettings(BME680_OST_SEL | BME680_OSP_SEL | BME680_OSH_SEL | BME680_GAS_SENSOR_SEL);
else if (i == 1 && bme680_status == 0) {
bme680_status = bme680.setSensorMode();
}
else if (i == 2) {
if (bme680_status == 0 && bme680.getSensorData(&data) == 0) {
kout << "BME680 temperature: " << (float)data.temperature / 100 << " degC" << endl;
kout << "BME680 humidity: " << (float)data.humidity / 1000 << " %" << endl;
kout << "BME680 pressure: " << (float)data.pressure / 100 << " hPa" << endl;
kout << "BME680 gas resistance: " << data.gas_resistance << endl;
} else {
kout << "# BME680 error " << bme680_status << endl;
}
}
i = (i + 1) % 20;
}
int main(void)
{
arch.setup();
gpio.setup();
kout.setup();
#ifdef POWER_PIN
gpio.output(POWER_PIN);
gpio.write(POWER_PIN, 1);
#endif
#ifdef MULTIPASS_ARCH_arduino_nano
kout << "# Reset reason: " << MCUSR << endl;
MCUSR = 0;
/* watchdog reset after ~4 seconds */
asm("wdr");
WDTCSR = _BV(WDCE) | _BV(WDE);
WDTCSR = _BV(WDE) | _BV(WDP3);
// One ADC conversion per four seconds
TCCR0A = 0;
TCCR0B = _BV(CS12) | _BV(CS10);
// Measure internal 1.1V bandgap using VCC as reference on each Timer 0 overflow
ADMUX = _BV(REFS0) | 0x0e;
ADCSRB = _BV(ADTS2);
ADCSRA = _BV(ADEN) | _BV(ADATE) | _BV(ADPS2) | _BV(ADPS1);
#endif
if (i2c.setup() != 0) {
kout << "# I2C setup failed" << endl;
return 1;
}
kout << "# I2C setup OK" << endl;
bme680.intf = BME680_I2C_INTF;
bme680.read = bme680_i2c_read;
bme680.write = bme680_i2c_write;
bme680.delay_ms = bme680_delay_ms;
bme680.amb_temp = 25;
arch.idle_loop();
return 0;
}