Skip to content
Snippets Groups Projects
deflate.cc 12.7 KiB
Newer Older
  • Learn to ignore specific revisions
  • 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
    /*
     * Copyright 2021 Daniel Friesel
     *
     * SPDX-License-Identifier: BSD-2-Clause
     */
    
    #include "lib/deflate.h"
    
    #ifdef DEFLATE_DEBUG
    #include "driver/stdout.h"
    #endif
    
    /*
     * The compressed (inflated) input data.
     */
    unsigned char *deflate_input_now;
    unsigned char *deflate_input_end;
    
    /*
     * The decompressed (deflated) output stream.
     */
    unsigned char *deflate_output_now;
    unsigned char *deflate_output_end;
    
    /*
     * The current bit offset in the input stream, if any.
     *
     * Deflate streams are read from least to most significant bit.
     * An offset of 1 indicates that the least significant bit is skipped
     * (i.e., only bits 7, 6, 5, 4, 3, 2, and 1 are read).
     */
    uint8_t deflate_bit_offset = 0;
    
    /*
     * Base lengths for length codes (code 257 to 285).
     * Code 257 corresponds to a copy of 3 bytes, etc.
     */
    uint16_t const deflate_length_offsets[] = {
    	3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, 35, 43, 51, 59,
    	67, 83, 99, 115, 131, 163, 195, 227, 258
    };
    
    /*
     * Extra bits for length codes (code 257 to 285).
     * Code 257 has no extra bits, code 265 has 1 extra bit
     * (and indicates a length of 11 or 12 depending on its value), etc.
     */
    uint8_t const deflate_length_bits[] = {
    	0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4,
    	5, 5, 5, 5, 0
    };
    
    // can also be expressed as (index < 4 || index == 28) ? 0 : (index-4) >> 2
    
    /*
     * Base distances for distance codes (code 0 to 29).
     * Code 0 indicates a distance of 1, etc.
     */
    uint16_t const deflate_distance_offsets[] = {
    	1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385,
    	513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577
    };
    
    /*
     * Extra bits for distance codes (code 0 to 29).
     * Code 0 has no extra bits, code 4 has 1 bit, etc.
     */
    uint8_t const deflate_distance_bits[] = {
    	0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10,
    	10, 11, 11, 12, 12, 13, 13
    };
    
    // can also be expressed as index < 2 ? 0 : (index-2) >> 1
    
    /*
     * In block type 2 (dynamic huffman codes), the code lengths of literal/length
     * and distance alphabet are themselves stored as huffman codes. To save space
     * in case only a few code lengths are used, the code length codes are stored
     * in the following order. This allows a few bits to be saved if some code
     * lengths are unused and the unused code lengths are at the end of the list.
     */
    uint8_t const deflate_hclen_index[] = {
    	16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15
    };
    
    /*
     * Code lengths of the "code length" code (see above).
     */
    uint8_t deflate_hc_lengths[19];
    
    /*
     * Code lengths of the literal/length and distance alphabets.
     */
    uint8_t deflate_lld_lengths[318];
    
    /*
     * Assumptions:
     * * huffman code length is limited to 11 bits
     * * there are no more than 255 huffman codes with the same length
     *
     * Rationale: longer huffman codes might appear when handling large data
     * sets. We don't do that; instead, we expect the uncompressed source to
     * be no more than a few kB of data.
     */
    
    /*
     * Bit length counts and next code entries for Literal/Length alphabet.
     * Combined with the code lengths in deflate_lld_lengths, these make up the
     * Literal/Length alphabet. See the algorithm in RFC 1951 section 3.2.2 for
     * details.
     *
     * In deflate, these variables are also used for the huffman alphabet in
     * dynamic huffman blocks.
     */
    uint8_t deflate_bl_count_ll[12];
    uint16_t deflate_next_code_ll[12];
    
    /*
     * Bit length counts and next code entries for Distance alphabet.
     */
    uint8_t deflate_bl_count_d[12];
    uint16_t deflate_next_code_d[12];
    
    static uint16_t deflate_rev_word(uint16_t word, uint8_t bits)
    {
    	uint16_t ret = 0;
    	uint16_t mask = 1;
    	for (uint16_t rmask = 1 << (bits - 1); rmask > 0; rmask >>= 1) {
    		if (word & rmask) {
    			ret |= mask;
    		}
    		mask <<= 1;
    	}
    	return ret;
    }
    
    static uint8_t deflate_bitmask(uint8_t bit_count)
    {
    	return (1 << bit_count) - 1;
    }
    
    static uint16_t deflate_get_word()
    {
    	uint16_t ret = 0;
    	ret |= (deflate_input_now[0] >> deflate_bit_offset);
    	ret |= (uint16_t) deflate_input_now[1] << (8 - deflate_bit_offset);
    	if (deflate_bit_offset) {
    		ret |=
    		    (uint16_t) (deflate_input_now[2] &
    				deflate_bitmask(deflate_bit_offset)) << (16 -
    									   deflate_bit_offset);
    	}
    #ifdef DEFLATE_DEBUG
    	kout << "get_word = " << bin << ret << dec << endl;
    #endif
    	return ret;
    }
    
    static uint16_t deflate_get_bits(uint8_t num_bits)
    {
    	uint16_t ret = deflate_get_word();
    	deflate_bit_offset += num_bits;
    	while (deflate_bit_offset >= 8) {
    		deflate_input_now++;
    		deflate_bit_offset -= 8;
    	}
    	return ret & deflate_bitmask(num_bits);
    }
    
    static void deflate_build_alphabet(uint8_t * lengths, uint16_t size,
    				    uint8_t * bl_count, uint16_t * next_code)
    {
    	uint16_t i;
    	uint16_t code = 0;
    	uint16_t max_len = 0;
    	for (i = 0; i < 12; i++) {
    		bl_count[i] = 0;
    	}
    
    	for (i = 0; i < size; i++) {
    		if (lengths[i]) {
    			bl_count[lengths[i]]++;
    		}
    		if (lengths[i] > max_len) {
    			max_len = lengths[i];
    		}
    	}
    
    	for (i = 1; i < max_len + 1; i++) {
    		code = (code + bl_count[i - 1]) << 1;
    		next_code[i] = code;
    	}
    
    #ifdef DEFLATE_DEBUG
    	for (i = 0; i < 12; i++) {
    		kout << "bl_count[" << i << "] = " << bl_count[i] << endl;
    	}
    	for (i = 0; i < 12; i++) {
    		kout << "next_code[" << i << "] = " << next_code[i] << endl;
    	}
    #endif
    }
    
    static uint16_t deflate_huff(uint8_t * lengths, uint16_t size,
    			      uint8_t * bl_count, uint16_t * next_code)
    {
    	uint16_t next_word = deflate_get_word();
    	for (uint8_t num_bits = 1; num_bits < 12; num_bits++) {
    		uint16_t next_bits = deflate_rev_word(next_word, num_bits);
    		if (bl_count[num_bits] && next_bits >= next_code[num_bits]
    		    && next_bits < next_code[num_bits] + bl_count[num_bits]) {
    #ifdef DEFLATE_DEBUG
    			kout << "found huffman code, length = " << num_bits <<
    			    endl;
    #endif
    			deflate_bit_offset += num_bits;
    			while (deflate_bit_offset >= 8) {
    				deflate_input_now++;
    				deflate_bit_offset -= 8;
    			}
    			uint8_t len_pos = next_bits;
    			uint8_t cur_pos = next_code[num_bits];
    			for (uint16_t i = 0; i < size; i++) {
    				if (lengths[i] == num_bits) {
    					if (cur_pos == len_pos) {
    						return i;
    					}
    					cur_pos++;
    				}
    			}
    		}
    	}
    	return 65535;
    }
    
    static int8_t deflate_huffman(uint8_t * ll_lengths, uint16_t ll_size,
    			       uint8_t * d_lengths, uint8_t d_size)
    {
    	uint16_t code;
    	uint16_t dcode;
    	while (1) {
    		code =
    		    deflate_huff(ll_lengths, ll_size, deflate_bl_count_ll,
    				  deflate_next_code_ll);
    #ifdef DEFLATE_DEBUG
    		kout << "code " << code << endl;
    #endif
    		if (code < 256) {
    			if (deflate_output_now == deflate_output_end) {
    				return DEFLATE_ERR_OUTPUT_LENGTH;
    			}
    			*deflate_output_now = code;
    			deflate_output_now++;
    		} else if (code == 256) {
    			return 0;
    		} else {
    			uint16_t len_val = deflate_length_offsets[code - 257];
    			uint8_t extra_bits = deflate_length_bits[code - 257];
    			if (extra_bits) {
    				len_val += deflate_get_bits(extra_bits);
    			}
    			dcode =
    			    deflate_huff(d_lengths, d_size,
    					  deflate_bl_count_d,
    					  deflate_next_code_d);
    			uint16_t dist_val = deflate_distance_offsets[dcode];
    			extra_bits = deflate_distance_bits[dcode];
    			if (extra_bits) {
    				dist_val += deflate_get_bits(extra_bits);
    			}
    			while (len_val--) {
    				if (deflate_output_now == deflate_output_end) {
    					return DEFLATE_ERR_OUTPUT_LENGTH;
    				}
    				deflate_output_now[0] =
    				    deflate_output_now[-dist_val];
    				deflate_output_now++;
    			}
    		}
    		if (deflate_input_now >= deflate_input_end - 4) {
    			return DEFLATE_ERR_INPUT_LENGTH;
    		}
    	}
    }
    
    static int8_t deflate_uncompressed()
    {
    	deflate_input_now++;
    	uint16_t len =
    	    ((uint16_t) deflate_input_now[1] << 8) + deflate_input_now[0];
    	uint16_t nlen =
    	    ((uint16_t) deflate_input_now[3] << 8) + deflate_input_now[2];
    	if (len & nlen) {
    		return DEFLATE_ERR_NLEN;
    	}
    	deflate_input_now += 4;
    	if (deflate_input_now + len >= deflate_input_end) {
    		return DEFLATE_ERR_INPUT_LENGTH;
    	}
    	if (deflate_output_now + len >= deflate_output_end) {
    		return DEFLATE_ERR_OUTPUT_LENGTH;
    	}
    	for (uint16_t i = 0; i < len; i++) {
    		*(deflate_output_now++) = *(deflate_input_now++);
    	}
    	return 0;
    }
    
    static int8_t deflate_static_huffman()
    {
    	uint16_t i;
    	for (i = 0; i <= 143; i++) {
    		deflate_lld_lengths[i] = 8;
    	}
    	for (i = 144; i <= 255; i++) {
    		deflate_lld_lengths[i] = 9;
    	}
    	for (i = 256; i <= 279; i++) {
    		deflate_lld_lengths[i] = 7;
    	}
    	for (i = 280; i <= 285; i++) {
    		deflate_lld_lengths[i] = 8;
    	}
    	for (i = 286; i <= 286 + 29; i++) {
    		deflate_lld_lengths[i] = 5;
    	}
    
    	deflate_build_alphabet(deflate_lld_lengths, 286, deflate_bl_count_ll,
    				deflate_next_code_ll);
    	deflate_build_alphabet(deflate_lld_lengths + 286, 29,
    				deflate_bl_count_d, deflate_next_code_d);
    	return deflate_huffman(deflate_lld_lengths, 286,
    				deflate_lld_lengths + 286, 29);
    }
    
    static int8_t deflate_dynamic_huffman()
    {
    	uint8_t i;
    	uint16_t hlit = 257 + deflate_get_bits(5);
    	uint8_t hdist = 1 + deflate_get_bits(5);
    	uint8_t hclen = 4 + deflate_get_bits(4);
    
    #ifdef DEFLATE_DEBUG
    	kout << "hlit=" << hlit << endl;
    	kout << "hdist=" << hdist << endl;
    	kout << "hclen=" << hclen << endl;
    #endif
    
    	for (i = 0; i < hclen; i++) {
    		deflate_hc_lengths[deflate_hclen_index[i]] =
    		    deflate_get_bits(3);
    	}
    	for (i = hclen; i < sizeof(deflate_hc_lengths); i++) {
    		deflate_hc_lengths[deflate_hclen_index[i]] = 0;
    	}
    
    	deflate_build_alphabet(deflate_hc_lengths,
    				sizeof(deflate_hc_lengths),
    				deflate_bl_count_ll, deflate_next_code_ll);
    
    	uint16_t items_processed = 0;
    	while (items_processed < hlit + hdist) {
    		uint8_t code =
    		    deflate_huff(deflate_hc_lengths, 19, deflate_bl_count_ll,
    				  deflate_next_code_ll);
    #ifdef DEFLATE_DEBUG
    		kout << "code = " << code << endl;
    #endif
    		if (code == 16) {
    			uint8_t copy_count = 3 + deflate_get_bits(2);
    			for (uint8_t i = 0; i < copy_count; i++) {
    				deflate_lld_lengths[items_processed] =
    				    deflate_lld_lengths[items_processed - 1];
    				items_processed++;
    			}
    		} else if (code == 17) {
    			uint8_t null_count = 3 + deflate_get_bits(3);
    			for (uint8_t i = 0; i < null_count; i++) {
    				deflate_lld_lengths[items_processed] = 0;
    				items_processed++;
    			}
    		} else if (code == 18) {
    			uint8_t null_count = 11 + deflate_get_bits(7);
    			for (uint8_t i = 0; i < null_count; i++) {
    				deflate_lld_lengths[items_processed] = 0;
    				items_processed++;
    			}
    		} else {
    			deflate_lld_lengths[items_processed] = code;
    			items_processed++;
    		}
    	}
    
    	deflate_build_alphabet(deflate_lld_lengths, hlit,
    				deflate_bl_count_ll, deflate_next_code_ll);
    	deflate_build_alphabet(deflate_lld_lengths + hlit, hdist,
    				deflate_bl_count_d, deflate_next_code_d);
    
    	return deflate_huffman(deflate_lld_lengths, hlit,
    				deflate_lld_lengths + hlit, hdist);
    }
    
    
    int16_t deflate(unsigned char *input_buf, uint16_t input_len,
    
    		unsigned char *output_buf, uint16_t output_len)
    {
    	uint8_t is_final = input_buf[0] & 0x01;
    	uint8_t block_type = (input_buf[0] & 0x06) >> 1;
    
    #ifdef DEFLATE_DEBUG
    	kout << "is_final=" << is_final << " block_type=" << block_type << endl;
    #endif
    
    	deflate_input_now = input_buf;
    	deflate_input_end = input_buf + input_len;
    	deflate_bit_offset = 3;
    
    	deflate_output_now = output_buf;
    	deflate_output_end = output_buf + output_len;
    
    
    	switch (block_type) {
    		case 0:
    			ret = deflate_uncompressed();
    			break;
    		case 1:
    			ret = deflate_static_huffman();
    			break;
    		case 2:
    			ret = deflate_dynamic_huffman();
    			break;
    		default:
    			return DEFLATE_ERR_BLOCK;
    
    	return deflate_output_now - output_buf;
    
    int16_t deflate_zlib(unsigned char *input_buf, uint16_t input_len,
    
    		     unsigned char *output_buf, uint16_t output_len)
    {
    	if (input_len < 4) {
    		return DEFLATE_ERR_INPUT_LENGTH;
    	}
    	uint8_t zlib_method = input_buf[0] & 0x0f;
    	uint8_t zlib_flags = input_buf[1];
    
    #ifdef DEFLATE_DEBUG
    	kout << "zlib_method=" << zlib_method << endl;
    	kout << "zlib_window_size=" << ((uint16_t) 1 <<
    					(8 +
    					 ((input_buf[0] & 0xf0) >> 4))) << endl;
    #endif
    
    	if (zlib_method != 8) {
    		return DEFLATE_ERR_METHOD;
    	}
    
    	if (zlib_flags & 0x20) {
    		return DEFLATE_ERR_FDICT;
    	}
    
    	if ((((uint16_t) input_buf[0] << 8) | input_buf[1]) % 31) {
    		return DEFLATE_ERR_FCHECK;
    	}
    
    
    	    deflate(input_buf + 2, input_len - 2, output_buf, output_len);
    
    #ifdef DEFLATE_CHECKSUM
    
    		uint16_t deflate_s1 = 1;
    		uint16_t deflate_s2 = 0;
    
    		deflate_output_end = deflate_output_now;
    		for (deflate_output_now = output_buf;
    		     deflate_output_now < deflate_output_end;
    		     deflate_output_now++) {
    			deflate_s1 =
    			    ((uint32_t) deflate_s1 +
    			     (uint32_t) (*deflate_output_now)) % 65521;
    			deflate_s2 =
    			    ((uint32_t) deflate_s2 +
    			     (uint32_t) deflate_s1) % 65521;
    		}
    
    		if (deflate_bit_offset) {
    			deflate_input_now++;
    		}
    
    		if ((deflate_s2 !=
    		     (((uint16_t) deflate_input_now[0] << 8) | (uint16_t)
    		      deflate_input_now[1]))
    		    || (deflate_s1 !=
    			(((uint16_t) deflate_input_now[2] << 8) | (uint16_t)
    			 deflate_input_now[3]))) {
    			return DEFLATE_ERR_CHECKSUM;
    		}
    	}
    #endif
    
    	return ret;
    }