Skip to content
Snippets Groups Projects
bme280.cc 36.3 KiB
Newer Older
  • Learn to ignore specific revisions
  • Daniel Friesel's avatar
    Daniel Friesel committed
    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
    /*
     *          /\
     *         /  \
     *        / !! \
     *       /______\
     *
     * In order to use the I2C interface, CSB needs to be pulled up before turning
     * on VDDIO (and after VDD). On most BME280 breakout boards sold on
     * AliExpress and similar sites, VDD and VDDIO are connected and there is only
     * one external VCC input, so following the power sequence outlined in the
     * datasheet is not possible. Additionally, the pull-up resistor connecting
     * CSB to VCC may delay logic high level on CSB long enough for the BM280
     * to start in SPI mode.
     *
     * In this case, you should connect (or power up, when using GPIO power)
     * breakout board pins in the following order:
     * * GND, SDA, SCLD
     * * CSB to 3V3
     * * VDD to 3V3
     */
    
    /**\mainpage
     * Copyright (C) 2018 - 2019 Bosch Sensortec GmbH
     *
     * Redistribution and use in source and binary forms, with or without
     * modification, are permitted provided that the following conditions are met:
     *
     * Redistributions of source code must retain the above copyright
     * notice, this list of conditions and the following disclaimer.
     *
     * Redistributions in binary form must reproduce the above copyright
     * notice, this list of conditions and the following disclaimer in the
     * documentation and/or other materials provided with the distribution.
     *
     * Neither the name of the copyright holder nor the names of the
     * contributors may be used to endorse or promote products derived from
     * this software without specific prior written permission.
     *
     * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
     * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
     * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     * DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDER
     * OR CONTRIBUTORS BE LIABLE FOR ANY
     * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
     * OR CONSEQUENTIAL DAMAGES(INCLUDING, BUT NOT LIMITED TO,
     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
     * ANY WAY OUT OF THE USE OF THIS
     * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
     *
     * The information provided is believed to be accurate and reliable.
     * The copyright holder assumes no responsibility
     * for the consequences of use
     * of such information nor for any infringement of patents or
     * other rights of third parties which may result from its use.
     * No license is granted by implication or otherwise under any patent or
     * patent rights of the copyright holder.
     *
     * File     bme280.c
     * Date     26 Aug 2019
     * Version  3.3.7
     *
     */
    
    /*! @file bme280.c
     * @brief Sensor driver for BME280 sensor
     */
    #include "driver/bme280.h"
    
    /**\name Internal macros */
    /* To identify osr settings selected by user */
    #define OVERSAMPLING_SETTINGS   UINT8_C(0x07)
    
    /* To identify filter and standby settings selected by user */
    #define FILTER_STANDBY_SETTINGS UINT8_C(0x18)
    
    
    /****************** Global Function Definitions *******************************/
    
    /*!
     *  @brief This API is the entry point.
     *  It reads the chip-id and calibration data from the sensor.
     */
    int8_t BME280::init()
    {
        int8_t rslt;
    
        /* chip id read try count */
        uint8_t try_count = 5;
        uint8_t chip_id = 0;
    
        /* Check for null pointer in the device structure*/
        rslt = null_ptr_check();
    
        /* Proceed if null check is fine */
        if (rslt == BME280_OK)
        {
            while (try_count)
            {
                /* Read the chip-id of bme280 sensor */
                rslt = get_regs(BME280_CHIP_ID_ADDR, &chip_id, 1);
    
                /* Check for chip id validity */
                if ((rslt == BME280_OK) && (chip_id == BME280_CHIP_ID))
                {
                    /* Reset the sensor */
                    rslt = soft_reset();
                    if (rslt == BME280_OK)
                    {
                        /* Read the calibration data */
                        rslt = get_calib_data();
                    }
                    break;
                }
    
                /* Wait for 1 ms */
                delay_ms(1);
                --try_count;
            }
    
            /* Chip id check failed */
            if (!try_count)
            {
                rslt = BME280_E_DEV_NOT_FOUND;
            }
        }
    
        return rslt;
    }
    
    /*!
     * @brief This API reads the data from the given register address of the sensor.
     */
    int8_t BME280::get_regs(uint8_t reg_addr, uint8_t *reg_data, uint16_t len)
    {
        int8_t rslt;
    
        /* Check for null pointer in the device structure*/
        rslt = null_ptr_check();
    
        /* Proceed if null check is fine */
        if (rslt == BME280_OK)
        {
            /* If interface selected is SPI */
            if (intf != BME280_I2C_INTF)
            {
                reg_addr = reg_addr | 0x80;
            }
    
            /* Read the data  */
            rslt = read(dev_id, reg_addr, reg_data, len);
    
            /* Check for communication error */
            if (rslt != BME280_OK)
            {
                rslt = BME280_E_COMM_FAIL;
            }
        }
    
        return rslt;
    }
    
    /*!
     * @brief This API writes the given data to the register address
     * of the sensor.
     */
    int8_t BME280::set_regs(uint8_t *reg_addr, const uint8_t *reg_data, uint8_t len)
    {
        int8_t rslt;
        uint8_t temp_buff[20]; /* Typically not to write more than 10 registers */
    
        if (len > 10)
        {
            len = 10;
        }
        uint16_t temp_len;
        uint8_t reg_addr_cnt;
    
        /* Check for null pointer in the device structure*/
        rslt = null_ptr_check();
    
        /* Check for arguments validity */
        if ((rslt == BME280_OK) && (reg_addr != NULL) && (reg_data != NULL))
        {
            if (len != 0)
            {
                temp_buff[0] = reg_data[0];
    
                /* If interface selected is SPI */
                if (intf != BME280_I2C_INTF)
                {
                    for (reg_addr_cnt = 0; reg_addr_cnt < len; reg_addr_cnt++)
                    {
                        reg_addr[reg_addr_cnt] = reg_addr[reg_addr_cnt] & 0x7F;
                    }
                }
    
                /* Burst write mode */
                if (len > 1)
                {
                    /* Interleave register address w.r.t data for
                     * burst write
                     */
                    interleave_reg_addr(reg_addr, temp_buff, reg_data, len);
                    temp_len = ((len * 2) - 1);
                }
                else
                {
                    temp_len = len;
                }
                rslt = write(dev_id, reg_addr[0], temp_buff, temp_len);
    
                /* Check for communication error */
                if (rslt != BME280_OK)
                {
                    rslt = BME280_E_COMM_FAIL;
                }
            }
            else
            {
                rslt = BME280_E_INVALID_LEN;
            }
        }
        else
        {
            rslt = BME280_E_NULL_PTR;
        }
    
        return rslt;
    }
    
    /*!
     * @brief This API sets the oversampling, filter and standby duration
     * (normal mode) settings in the sensor.
     */
    int8_t BME280::set_sensor_settings(uint8_t desired_settings)
    {
        int8_t rslt;
        uint8_t sensor_mode;
    
        /* Check for null pointer in the device structure*/
        rslt = null_ptr_check();
    
        /* Proceed if null check is fine */
        if (rslt == BME280_OK)
        {
            rslt = get_sensor_mode(&sensor_mode);
            if ((rslt == BME280_OK) && (sensor_mode != BME280_SLEEP_MODE))
            {
                rslt = put_device_to_sleep();
            }
            if (rslt == BME280_OK)
            {
                /* Check if user wants to change oversampling
                 * settings
                 */
                if (are_settings_changed(OVERSAMPLING_SETTINGS, desired_settings))
                {
                    rslt = set_osr_settings(desired_settings, &settings);
                }
    
                /* Check if user wants to change filter and/or
                 * standby settings
                 */
                if ((rslt == BME280_OK) && are_settings_changed(FILTER_STANDBY_SETTINGS, desired_settings))
                {
                    rslt = set_filter_standby_settings(desired_settings, &settings);
                }
            }
        }
    
        return rslt;
    }
    
    /*!
     * @brief This API gets the oversampling, filter and standby duration
     * (normal mode) settings from the sensor.
     */
    int8_t BME280::get_sensor_settings()
    {
        int8_t rslt;
        uint8_t reg_data[4];
    
        /* Check for null pointer in the device structure*/
        rslt = null_ptr_check();
    
        /* Proceed if null check is fine */
        if (rslt == BME280_OK)
        {
            rslt = get_regs(BME280_CTRL_HUM_ADDR, reg_data, 4);
            if (rslt == BME280_OK)
            {
                parse_device_settings(reg_data, &settings);
            }
        }
    
        return rslt;
    }
    
    /*!
     * @brief This API sets the power mode of the sensor.
     */
    int8_t BME280::set_sensor_mode(uint8_t sensor_mode)
    {
        int8_t rslt;
        uint8_t last_set_mode;
    
        /* Check for null pointer in the device structure*/
        rslt = null_ptr_check();
        if (rslt == BME280_OK)
        {
            rslt = get_sensor_mode(&last_set_mode);
    
            /* If the sensor is not in sleep mode put the device to sleep
             * mode
             */
            if ((rslt == BME280_OK) && (last_set_mode != BME280_SLEEP_MODE))
            {
                rslt = put_device_to_sleep();
            }
    
            /* Set the power mode */
            if (rslt == BME280_OK)
            {
                rslt = write_power_mode(sensor_mode);
            }
        }
    
        return rslt;
    }
    
    /*!
     * @brief This API gets the power mode of the sensor.
     */
    int8_t BME280::get_sensor_mode(uint8_t *sensor_mode)
    {
        int8_t rslt;
    
        /* Check for null pointer in the device structure*/
        rslt = null_ptr_check();
        if (rslt == BME280_OK)
        {
            /* Read the power mode register */
            rslt = get_regs(BME280_PWR_CTRL_ADDR, sensor_mode, 1);
    
            /* Assign the power mode in the device structure */
            *sensor_mode = BME280_GET_BITS_POS_0(*sensor_mode, BME280_SENSOR_MODE);
        }
    
        return rslt;
    }
    
    /*!
     * @brief This API performs the soft reset of the sensor.
     */
    int8_t BME280::soft_reset()
    {
        int8_t rslt;
        uint8_t reg_addr = BME280_RESET_ADDR;
        uint8_t status_reg = 0;
        uint8_t try_run = 5;
    
        /* 0xB6 is the soft reset command */
        uint8_t soft_rst_cmd = BME280_SOFT_RESET_COMMAND;
    
        /* Check for null pointer in the device structure*/
        rslt = null_ptr_check();
    
        /* Proceed if null check is fine */
        if (rslt == BME280_OK)
        {
            /* Write the soft reset command in the sensor */
            rslt = set_regs(&reg_addr, &soft_rst_cmd, 1);
    
            if (rslt == BME280_OK)
            {
                /* If NVM not copied yet, Wait for NVM to copy */
                do
                {
                    /* As per data sheet - Table 1, startup time is 2 ms. */
                    delay_ms(2);
                    rslt = get_regs(BME280_STATUS_REG_ADDR, &status_reg, 1);
                } while ((rslt == BME280_OK) && (try_run--) && (status_reg & BME280_STATUS_IM_UPDATE));
    
                if (status_reg & BME280_STATUS_IM_UPDATE)
                {
                    rslt = BME280_E_NVM_COPY_FAILED;
                }
    
            }
        }
    
        return rslt;
    }
    
    /*!
     * @brief This API reads the pressure, temperature and humidity data from the
     * sensor, compensates the data and store it in the bme280_data structure
     * instance passed by the user.
     */
    int8_t BME280::get_sensor_data(uint8_t sensor_comp, struct bme280_data *comp_data)
    {
        int8_t rslt;
    
        /* Array to store the pressure, temperature and humidity data read from
         * the sensor
         */
        uint8_t reg_data[BME280_P_T_H_DATA_LEN] = { 0 };
        struct bme280_uncomp_data uncomp_data = { 0, 0, 0 };
    
        /* Check for null pointer in the device structure*/
        rslt = null_ptr_check();
        if ((rslt == BME280_OK) && (comp_data != NULL))
        {
            /* Read the pressure and temperature data from the sensor */
            rslt = get_regs(BME280_DATA_ADDR, reg_data, BME280_P_T_H_DATA_LEN);
            if (rslt == BME280_OK)
            {
                /* Parse the read data from the sensor */
                parse_sensor_data(reg_data, &uncomp_data);
    
                /* Compensate the pressure and/or temperature and/or
                 * humidity data from the sensor
                 */
                rslt = compensate_data(sensor_comp, &uncomp_data, comp_data, &calib_data);
            }
        }
        else
        {
            rslt = BME280_E_NULL_PTR;
        }
    
        return rslt;
    }
    
    /*!
     *  @brief This API is used to parse the pressure, temperature and
     *  humidity data and store it in the bme280_uncomp_data structure instance.
     */
    void BME280::parse_sensor_data(const uint8_t *reg_data, struct bme280_uncomp_data *uncomp_data)
    {
        /* Variables to store the sensor data */
        uint32_t data_xlsb;
        uint32_t data_lsb;
        uint32_t data_msb;
    
        /* Store the parsed register values for pressure data */
        data_msb = (uint32_t)reg_data[0] << 12;
        data_lsb = (uint32_t)reg_data[1] << 4;
        data_xlsb = (uint32_t)reg_data[2] >> 4;
        uncomp_data->pressure = data_msb | data_lsb | data_xlsb;
    
        /* Store the parsed register values for temperature data */
        data_msb = (uint32_t)reg_data[3] << 12;
        data_lsb = (uint32_t)reg_data[4] << 4;
        data_xlsb = (uint32_t)reg_data[5] >> 4;
        uncomp_data->temperature = data_msb | data_lsb | data_xlsb;
    
        /* Store the parsed register values for temperature data */
        data_lsb = (uint32_t)reg_data[6] << 8;
        data_msb = (uint32_t)reg_data[7];
        uncomp_data->humidity = data_msb | data_lsb;
    }
    
    /*!
     * @brief This API is used to compensate the pressure and/or
     * temperature and/or humidity data according to the component selected
     * by the user.
     */
    int8_t BME280::compensate_data(uint8_t sensor_comp,
                                  const struct bme280_uncomp_data *uncomp_data,
                                  struct bme280_data *comp_data,
                                  struct bme280_calib_data *calib_data)
    {
        int8_t rslt = BME280_OK;
    
        if ((uncomp_data != NULL) && (comp_data != NULL) && (calib_data != NULL))
        {
            /* Initialize to zero */
            comp_data->temperature = 0;
            comp_data->pressure = 0;
            comp_data->humidity = 0;
    
            /* If pressure or temperature component is selected */
            if (sensor_comp & (BME280_PRESS | BME280_TEMP | BME280_HUM))
            {
                /* Compensate the temperature data */
                comp_data->temperature = compensate_temperature(uncomp_data, calib_data);
            }
            if (sensor_comp & BME280_PRESS)
            {
                /* Compensate the pressure data */
                comp_data->pressure = compensate_pressure(uncomp_data, calib_data);
            }
            if (sensor_comp & BME280_HUM)
            {
                /* Compensate the humidity data */
                comp_data->humidity = compensate_humidity(uncomp_data, calib_data);
            }
        }
        else
        {
            rslt = BME280_E_NULL_PTR;
        }
    
        return rslt;
    }
    
    /*!
     * @brief This internal API sets the oversampling settings for pressure,
     * temperature and humidity in the sensor.
     */
    int8_t BME280::set_osr_settings(uint8_t desired_settings,
                                   const struct bme280_settings *settings)
    {
        int8_t rslt = BME280_W_INVALID_OSR_MACRO;
    
        if (desired_settings & BME280_OSR_HUM_SEL)
        {
            rslt = set_osr_humidity_settings(settings);
        }
        if (desired_settings & (BME280_OSR_PRESS_SEL | BME280_OSR_TEMP_SEL))
        {
            rslt = set_osr_press_temp_settings(desired_settings, settings);
        }
    
        return rslt;
    }
    
    /*!
     * @brief This API sets the humidity oversampling settings of the sensor.
     */
    int8_t BME280::set_osr_humidity_settings(const struct bme280_settings *settings)
    {
        int8_t rslt;
        uint8_t ctrl_hum;
        uint8_t ctrl_meas;
        uint8_t reg_addr = BME280_CTRL_HUM_ADDR;
    
        ctrl_hum = settings->osr_h & BME280_CTRL_HUM_MSK;
    
        /* Write the humidity control value in the register */
        rslt = set_regs(&reg_addr, &ctrl_hum, 1);
    
        /* Humidity related changes will be only effective after a
         * write operation to ctrl_meas register
         */
        if (rslt == BME280_OK)
        {
            reg_addr = BME280_CTRL_MEAS_ADDR;
            rslt = get_regs(reg_addr, &ctrl_meas, 1);
            if (rslt == BME280_OK)
            {
                rslt = set_regs(&reg_addr, &ctrl_meas, 1);
            }
        }
    
        return rslt;
    }
    
    /*!
     * @brief This API sets the pressure and/or temperature oversampling settings
     * in the sensor according to the settings selected by the user.
     */
    int8_t BME280::set_osr_press_temp_settings(uint8_t desired_settings,
                                              const struct bme280_settings *settings)
    {
        int8_t rslt;
        uint8_t reg_addr = BME280_CTRL_MEAS_ADDR;
        uint8_t reg_data;
    
        rslt = BME280::get_regs(reg_addr, &reg_data, 1);
        if (rslt == BME280_OK)
        {
            if (desired_settings & BME280_OSR_PRESS_SEL)
            {
                fill_osr_press_settings(&reg_data, settings);
            }
            if (desired_settings & BME280_OSR_TEMP_SEL)
            {
                fill_osr_temp_settings(&reg_data, settings);
            }
    
            /* Write the oversampling settings in the register */
            rslt = BME280::set_regs(&reg_addr, &reg_data, 1);
        }
    
        return rslt;
    }
    
    /*!
     * @brief This internal API sets the filter and/or standby duration settings
     * in the sensor according to the settings selected by the user.
     */
    int8_t BME280::set_filter_standby_settings(uint8_t desired_settings,
                                              const struct bme280_settings *settings)
    {
        int8_t rslt;
        uint8_t reg_addr = BME280_CONFIG_ADDR;
        uint8_t reg_data;
    
        rslt = get_regs(reg_addr, &reg_data, 1);
        if (rslt == BME280_OK)
        {
            if (desired_settings & BME280_FILTER_SEL)
            {
                fill_filter_settings(&reg_data, settings);
            }
            if (desired_settings & BME280_STANDBY_SEL)
            {
                fill_standby_settings(&reg_data, settings);
            }
    
            /* Write the oversampling settings in the register */
            rslt = set_regs(&reg_addr, &reg_data, 1);
        }
    
        return rslt;
    }
    
    /*!
     * @brief This internal API fills the filter settings provided by the user
     * in the data buffer so as to write in the sensor.
     */
    void BME280::fill_filter_settings(uint8_t *reg_data, const struct bme280_settings *settings)
    {
        *reg_data = BME280_SET_BITS(*reg_data, BME280_FILTER, settings->filter);
    }
    
    /*!
     * @brief This internal API fills the standby duration settings provided by
     * the user in the data buffer so as to write in the sensor.
     */
    void BME280::fill_standby_settings(uint8_t *reg_data, const struct bme280_settings *settings)
    {
        *reg_data = BME280_SET_BITS(*reg_data, BME280_STANDBY, settings->standby_time);
    }
    
    /*!
     * @brief This internal API fills the pressure oversampling settings provided by
     * the user in the data buffer so as to write in the sensor.
     */
    void BME280::fill_osr_press_settings(uint8_t *reg_data, const struct bme280_settings *settings)
    {
        *reg_data = BME280_SET_BITS(*reg_data, BME280_CTRL_PRESS, settings->osr_p);
    }
    
    /*!
     * @brief This internal API fills the temperature oversampling settings
     * provided by the user in the data buffer so as to write in the sensor.
     */
    void BME280::fill_osr_temp_settings(uint8_t *reg_data, const struct bme280_settings *settings)
    {
        *reg_data = BME280_SET_BITS(*reg_data, BME280_CTRL_TEMP, settings->osr_t);
    }
    
    /*!
     * @brief This internal API parse the oversampling(pressure, temperature
     * and humidity), filter and standby duration settings and store in the
     * device structure.
     */
    void BME280::parse_device_settings(const uint8_t *reg_data, struct bme280_settings *settings)
    {
        settings->osr_h = BME280_GET_BITS_POS_0(reg_data[0], BME280_CTRL_HUM);
        settings->osr_p = BME280_GET_BITS(reg_data[2], BME280_CTRL_PRESS);
        settings->osr_t = BME280_GET_BITS(reg_data[2], BME280_CTRL_TEMP);
        settings->filter = BME280_GET_BITS(reg_data[3], BME280_FILTER);
        settings->standby_time = BME280_GET_BITS(reg_data[3], BME280_STANDBY);
    }
    
    /*!
     * @brief This internal API writes the power mode in the sensor.
     */
    int8_t BME280::write_power_mode(uint8_t sensor_mode)
    {
        int8_t rslt;
        uint8_t reg_addr = BME280_PWR_CTRL_ADDR;
    
        /* Variable to store the value read from power mode register */
        uint8_t sensor_mode_reg_val;
    
        /* Read the power mode register */
        rslt = get_regs(reg_addr, &sensor_mode_reg_val, 1);
    
        /* Set the power mode */
        if (rslt == BME280_OK)
        {
            sensor_mode_reg_val = BME280_SET_BITS_POS_0(sensor_mode_reg_val, BME280_SENSOR_MODE, sensor_mode);
    
            /* Write the power mode in the register */
            rslt = set_regs(&reg_addr, &sensor_mode_reg_val, 1);
        }
    
        return rslt;
    }
    
    /*!
     * @brief This internal API puts the device to sleep mode.
     */
    int8_t BME280::put_device_to_sleep()
    {
        int8_t rslt;
        uint8_t reg_data[4];
        struct bme280_settings settings;
    
        rslt = get_regs(BME280_CTRL_HUM_ADDR, reg_data, 4);
        if (rslt == BME280_OK)
        {
            parse_device_settings(reg_data, &settings);
            rslt = soft_reset();
            if (rslt == BME280_OK)
            {
                rslt = reload_device_settings(&settings);
            }
        }
    
        return rslt;
    }
    
    /*!
     * @brief This internal API reloads the already existing device settings in
     * the sensor after soft reset.
     */
    int8_t BME280::reload_device_settings(const struct bme280_settings *settings)
    {
        int8_t rslt;
    
        rslt = set_osr_settings(BME280_ALL_SETTINGS_SEL, settings);
        if (rslt == BME280_OK)
        {
            rslt = set_filter_standby_settings(BME280_ALL_SETTINGS_SEL, settings);
        }
    
        return rslt;
    }
    
    #ifdef BME280_FLOAT_ENABLE
    
    /*!
     * @brief This internal API is used to compensate the raw temperature data and
     * return the compensated temperature data in double data type.
     */
    double BME280::compensate_temperature(const struct bme280_uncomp_data *uncomp_data, struct bme280_calib_data *calib_data)
    {
        double var1;
        double var2;
        double temperature;
        double temperature_min = -40;
        double temperature_max = 85;
    
        var1 = ((double)uncomp_data->temperature) / 16384.0 - ((double)calib_data->dig_T1) / 1024.0;
        var1 = var1 * ((double)calib_data->dig_T2);
        var2 = (((double)uncomp_data->temperature) / 131072.0 - ((double)calib_data->dig_T1) / 8192.0);
        var2 = (var2 * var2) * ((double)calib_data->dig_T3);
        calib_data->t_fine = (int32_t)(var1 + var2);
        temperature = (var1 + var2) / 5120.0;
        if (temperature < temperature_min)
        {
            temperature = temperature_min;
        }
        else if (temperature > temperature_max)
        {
            temperature = temperature_max;
        }
    
        return temperature;
    }
    
    /*!
     * @brief This internal API is used to compensate the raw pressure data and
     * return the compensated pressure data in double data type.
     */
    double BME280::compensate_pressure(const struct bme280_uncomp_data *uncomp_data,
                                      const struct bme280_calib_data *calib_data)
    {
        double var1;
        double var2;
        double var3;
        double pressure;
        double pressure_min = 30000.0;
        double pressure_max = 110000.0;
    
        var1 = ((double)calib_data->t_fine / 2.0) - 64000.0;
        var2 = var1 * var1 * ((double)calib_data->dig_P6) / 32768.0;
        var2 = var2 + var1 * ((double)calib_data->dig_P5) * 2.0;
        var2 = (var2 / 4.0) + (((double)calib_data->dig_P4) * 65536.0);
        var3 = ((double)calib_data->dig_P3) * var1 * var1 / 524288.0;
        var1 = (var3 + ((double)calib_data->dig_P2) * var1) / 524288.0;
        var1 = (1.0 + var1 / 32768.0) * ((double)calib_data->dig_P1);
    
        /* avoid exception caused by division by zero */
        if (var1)
        {
            pressure = 1048576.0 - (double) uncomp_data->pressure;
            pressure = (pressure - (var2 / 4096.0)) * 6250.0 / var1;
            var1 = ((double)calib_data->dig_P9) * pressure * pressure / 2147483648.0;
            var2 = pressure * ((double)calib_data->dig_P8) / 32768.0;
            pressure = pressure + (var1 + var2 + ((double)calib_data->dig_P7)) / 16.0;
            if (pressure < pressure_min)
            {
                pressure = pressure_min;
            }
            else if (pressure > pressure_max)
            {
                pressure = pressure_max;
            }
        }
        else /* Invalid case */
        {
            pressure = pressure_min;
        }
    
        return pressure;
    }
    
    /*!
     * @brief This internal API is used to compensate the raw humidity data and
     * return the compensated humidity data in double data type.
     */
    double BME280::compensate_humidity(const struct bme280_uncomp_data *uncomp_data,
                                      const struct bme280_calib_data *calib_data)
    {
        double humidity;
        double humidity_min = 0.0;
        double humidity_max = 100.0;
        double var1;
        double var2;
        double var3;
        double var4;
        double var5;
        double var6;
    
        var1 = ((double)calib_data->t_fine) - 76800.0;
        var2 = (((double)calib_data->dig_H4) * 64.0 + (((double)calib_data->dig_H5) / 16384.0) * var1);
        var3 = uncomp_data->humidity - var2;
        var4 = ((double)calib_data->dig_H2) / 65536.0;
        var5 = (1.0 + (((double)calib_data->dig_H3) / 67108864.0) * var1);
        var6 = 1.0 + (((double)calib_data->dig_H6) / 67108864.0) * var1 * var5;
        var6 = var3 * var4 * (var5 * var6);
        humidity = var6 * (1.0 - ((double)calib_data->dig_H1) * var6 / 524288.0);
        if (humidity > humidity_max)
        {
            humidity = humidity_max;
        }
        else if (humidity < humidity_min)
        {
            humidity = humidity_min;
        }
    
        return humidity;
    }
    
    #else
    
    /*!
     * @brief This internal API is used to compensate the raw temperature data and
     * return the compensated temperature data in integer data type.
     */
    int32_t BME280::compensate_temperature(const struct bme280_uncomp_data *uncomp_data,
                                          struct bme280_calib_data *calib_data)
    {
        int32_t var1;
        int32_t var2;
        int32_t temperature;
        int32_t temperature_min = -4000;
        int32_t temperature_max = 8500;
    
        var1 = (int32_t)((uncomp_data->temperature / 8) - ((int32_t)calib_data->dig_T1 * 2));
        var1 = (var1 * ((int32_t)calib_data->dig_T2)) / 2048;
        var2 = (int32_t)((uncomp_data->temperature / 16) - ((int32_t)calib_data->dig_T1));
        var2 = (((var2 * var2) / 4096) * ((int32_t)calib_data->dig_T3)) / 16384;
        calib_data->t_fine = var1 + var2;
        temperature = (calib_data->t_fine * 5 + 128) / 256;
        if (temperature < temperature_min)
        {
            temperature = temperature_min;
        }
        else if (temperature > temperature_max)
        {
            temperature = temperature_max;
        }
    
        return temperature;
    }
    #ifdef BME280_64BIT_ENABLE
    
    /*!
     * @brief This internal API is used to compensate the raw pressure data and
     * return the compensated pressure data in integer data type with higher
     * accuracy.
     */
    uint32_t BME280::compensate_pressure(const struct bme280_uncomp_data *uncomp_data,
                                        const struct bme280_calib_data *calib_data)
    {
        int64_t var1;
        int64_t var2;
        int64_t var3;
        int64_t var4;
        uint32_t pressure;
        uint32_t pressure_min = 3000000;
        uint32_t pressure_max = 11000000;
    
        var1 = ((int64_t)calib_data->t_fine) - 128000;
        var2 = var1 * var1 * (int64_t)calib_data->dig_P6;
        var2 = var2 + ((var1 * (int64_t)calib_data->dig_P5) * 131072);
        var2 = var2 + (((int64_t)calib_data->dig_P4) * 34359738368);
        var1 = ((var1 * var1 * (int64_t)calib_data->dig_P3) / 256) + ((var1 * ((int64_t)calib_data->dig_P2) * 4096));
        var3 = ((int64_t)1) * 140737488355328;
        var1 = (var3 + var1) * ((int64_t)calib_data->dig_P1) / 8589934592;
    
        /* To avoid divide by zero exception */
        if (var1 != 0)
        {
            var4 = 1048576 - uncomp_data->pressure;
            var4 = (((var4 * INT64_C(2147483648)) - var2) * 3125) / var1;
            var1 = (((int64_t)calib_data->dig_P9) * (var4 / 8192) * (var4 / 8192)) / 33554432;
            var2 = (((int64_t)calib_data->dig_P8) * var4) / 524288;
            var4 = ((var4 + var1 + var2) / 256) + (((int64_t)calib_data->dig_P7) * 16);
            pressure = (uint32_t)(((var4 / 2) * 100) / 128);
            if (pressure < pressure_min)
            {
                pressure = pressure_min;
            }
            else if (pressure > pressure_max)
            {
                pressure = pressure_max;
            }
        }
        else
        {
            pressure = pressure_min;
        }
    
        return pressure;
    }
    #else
    
    /*!
     * @brief This internal API is used to compensate the raw pressure data and
     * return the compensated pressure data in integer data type.
     */
    uint32_t BME280::compensate_pressure(const struct bme280_uncomp_data *uncomp_data,
                                        const struct bme280_calib_data *calib_data)
    {
        int32_t var1;
        int32_t var2;
        int32_t var3;
        int32_t var4;
        uint32_t var5;
        uint32_t pressure;
        uint32_t pressure_min = 30000;
        uint32_t pressure_max = 110000;
    
        var1 = (((int32_t)calib_data->t_fine) / 2) - (int32_t)64000;
        var2 = (((var1 / 4) * (var1 / 4)) / 2048) * ((int32_t)calib_data->dig_P6);
        var2 = var2 + ((var1 * ((int32_t)calib_data->dig_P5)) * 2);
        var2 = (var2 / 4) + (((int32_t)calib_data->dig_P4) * 65536);
        var3 = (calib_data->dig_P3 * (((var1 / 4) * (var1 / 4)) / 8192)) / 8;
        var4 = (((int32_t)calib_data->dig_P2) * var1) / 2;
        var1 = (var3 + var4) / 262144;
        var1 = (((32768 + var1)) * ((int32_t)calib_data->dig_P1)) / 32768;
    
        /* avoid exception caused by division by zero */
        if (var1)
        {
            var5 = (uint32_t)((uint32_t)1048576) - uncomp_data->pressure;
            pressure = ((uint32_t)(var5 - (uint32_t)(var2 / 4096))) * 3125;
            if (pressure < 0x80000000)
            {
                pressure = (pressure << 1) / ((uint32_t)var1);
            }
            else
            {
                pressure = (pressure / (uint32_t)var1) * 2;
            }
            var1 = (((int32_t)calib_data->dig_P9) * ((int32_t)(((pressure / 8) * (pressure / 8)) / 8192))) / 4096;
            var2 = (((int32_t)(pressure / 4)) * ((int32_t)calib_data->dig_P8)) / 8192;
            pressure = (uint32_t)((int32_t)pressure + ((var1 + var2 + calib_data->dig_P7) / 16));
            if (pressure < pressure_min)
            {
                pressure = pressure_min;
            }
            else if (pressure > pressure_max)
            {
                pressure = pressure_max;
            }
        }
        else
        {
            pressure = pressure_min;
        }
    
        return pressure;
    }
    #endif