Newer
Older
#include "driver/soft_i2c.h"
#include "driver/gpio.h"
#ifdef SOFTI2C_TIMER
#ifdef TIMER_CYCLES
#error "SOFTI2C_TIMER and TIMER_CYCLES are mutually exclusive"
#endif
#include "driver/timer.h"
#endif
#ifdef SOFTI2C_PULLUP
#define SDA_HIGH gpio.input(sda, 1)
#define SDA_LOW gpio.output(sda, 0)
#define SCL_HIGH gpio.input(scl, 1)
#define SCL_LOW gpio.output(scl, 0)
#else
#define SDA_HIGH gpio.input(sda)
#define SDA_LOW gpio.output(sda)
#define SCL_HIGH gpio.input(scl)
#define SCL_LOW gpio.output(scl)
#endif
#ifndef SOFTI2C_TIMER
signed char SoftI2C::setup()
{
SDA_HIGH;
SCL_HIGH;
return 0;
}
void SoftI2C::start()
{
SDA_HIGH;
SCL_HIGH;
}
void SoftI2C::stop()
{
}
bool SoftI2C::tx(unsigned char byte)
{
unsigned char got_ack = 0;
for (unsigned char i = 0; i <= 8; i++) {
if ((byte & 0x80) || (i == 8)) {
//
if (i == 8) {
if (!gpio.read(sda)) {
got_ack = 1;
}
}
//
}
return got_ack;
}
unsigned char SoftI2C::rx(bool send_ack)
{
unsigned char byte = 0;
for (unsigned char i = 0; i <= 8; i++) {
//
//
if ((i < 8) && gpio.read(sda)) {
byte |= 1 << (7 - i);
}
//
//
if ((i == 7) && send_ack) {
} else if ((i == 8) && send_ack) {
}
}
return byte;
}
void SoftI2C::scan(unsigned int *results)
{
unsigned char i2caddr;
for (unsigned char address = 0; address < 128; address++) {
start();
if (tx(i2caddr)) {
results[address / (8 * sizeof(unsigned int))] |= 1 << (address % (8 * sizeof(unsigned int)));
}
}
stop();
}
signed char SoftI2C::xmit(unsigned char address,
unsigned char tx_len, unsigned char *tx_buf,
unsigned char rx_len, unsigned char *rx_buf)
{
unsigned char i;
if (tx_len) {
start();
tx((address << 1) | 0);
for (i = 0; i < tx_len; i++) {
tx(tx_buf[i]);
}
}
if (rx_len) {
start();
tx((address << 1) | 1);
for (i = 1; i <= rx_len; i++) {
}
}
stop();
return 0;
}
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
#else
#ifndef F_I2C
#define F_I2C 100000
#endif
volatile unsigned char timer_done = 0;
inline void await_timer()
{
timer_done = 0;
timer.start(1);
while (!timer_done) {
arch.idle();
}
timer.stop();
}
signed char SoftI2C::setup()
{
SDA_HIGH;
SCL_HIGH;
/*
* I2C frequency is the time between two SCL low->high transitions
* (or high->low, whatever you prefer). For the timer, we need to set the
* time between SCL low->high and the following high->low transition
* (and vice versa), which is twice the desired I2C frequency. Also,
* timer.setup wants kHz and not Hz, so we have
* Timer Freq [kHz] = I2C Freq [Hz] * 2 / 1000
*/
timer.setup(F_I2C / 500);
return 0;
}
void SoftI2C::start()
{
SDA_HIGH;
SCL_HIGH;
await_timer();
SDA_LOW;
await_timer();
SCL_LOW;
await_timer();
}
void SoftI2C::stop()
{
SCL_LOW;
SDA_LOW;
await_timer();
SCL_HIGH;
await_timer();
SDA_HIGH;
}
bool SoftI2C::tx(unsigned char byte)
{
unsigned char got_ack = 0;
for (unsigned char i = 0; i <= 8; i++) {
if ((byte & 0x80) || (i == 8)) {
SDA_HIGH;
} else {
SDA_LOW;
}
byte <<= 1;
SCL_HIGH;
await_timer();
while (!gpio.read(scl)) ;
if (i == 8) {
if (!gpio.read(sda)) {
got_ack = 1;
}
}
SCL_LOW;
await_timer();
}
return got_ack;
}
unsigned char SoftI2C::rx(bool send_ack)
{
unsigned char byte = 0;
SDA_HIGH;
for (unsigned char i = 0; i <= 8; i++) {
SCL_HIGH;
await_timer();
while (!gpio.read(scl)) ;
if ((i < 8) && gpio.read(sda)) {
byte |= 1 << (7 - i);
}
SCL_LOW;
await_timer();
if ((i == 7) && send_ack) {
SDA_LOW;
} else if ((i == 8) && send_ack) {
SDA_HIGH;
}
}
return byte;
}
void SoftI2C::scan(unsigned int *results)
{
unsigned char i2caddr;
for (unsigned char address = 0; address < 128; address++) {
i2caddr = (address << 1) | 0;
start();
if (tx(i2caddr)) {
results[address / (8 * sizeof(unsigned int))] |= 1 << (address % (8 * sizeof(unsigned int)));
stop();
}
}
stop();
}
signed char SoftI2C::xmit(unsigned char address,
unsigned char tx_len, unsigned char *tx_buf,
unsigned char rx_len, unsigned char *rx_buf)
{
unsigned char i;
if (tx_len) {
start();
tx((address << 1) | 0);
for (i = 0; i < tx_len; i++) {
tx(tx_buf[i]);
}
}
if (rx_len) {
start();
tx((address << 1) | 1);
for (i = 1; i <= rx_len; i++) {
rx_buf[i-1] = rx((i < rx_len) * 1);
}
}
stop();
return 0;
}
ON_TIMER_INTERRUPT
{
timer_done = 1;
}
#endif
#ifdef MULTIPASS_ARCH_esp8266
SoftI2C i2c(GPIO::d7, GPIO::d8);
#elif MULTIPASS_ARCH_arduino_nano
SoftI2C i2c(GPIO::pc4, GPIO::pc5);
#elif MULTIPASS_ARCH_blinkenrocket
SoftI2C i2c(GPIO::pc4, GPIO::pc5);
SoftI2C i2c(GPIO::p1_6, GPIO::p1_7);