-
Daniel Friesel authoredDaniel Friesel authored
nrf24l01.cc 13.64 KiB
/*
* Based on https://github.com/nRF24/RF24
*/
#include <stdlib.h>
#include "driver/nrf24l01.h"
#include "driver/nrf24l01/registers.h"
#ifdef MULTIPASS_ARCH_arduino_nano
#include "driver/spi.h"
#endif
#ifdef MULTIPASS_ARCH_msp430fr5969lp
#include "driver/spi_b.h"
#endif
#ifdef MULTIPASS_ARCH_msp430fr5994lp
#include "driver/spi_b.h"
#endif
#include "driver/gpio.h"
#include "arch.h"
#ifndef NRF24L01_EN_PIN
#error makeflag nrf24l01_en_pin required
#endif
#ifndef NRF24L01_CS_PIN
#error makeflag nrf24l01_cs_pin required
#endif
static const uint8_t child_pipe[] =
{
RX_ADDR_P0, RX_ADDR_P1, RX_ADDR_P2, RX_ADDR_P3, RX_ADDR_P4, RX_ADDR_P5};
static const uint8_t child_payload_size[] =
{
RX_PW_P0, RX_PW_P1, RX_PW_P2, RX_PW_P3, RX_PW_P4, RX_PW_P5};
static const uint8_t child_pipe_enable[] =
{
ERX_P0, ERX_P1, ERX_P2, ERX_P3, ERX_P4, ERX_P5};
void Nrf24l01::setup()
{
spi.setup();
gpio.input(NRF24L01_IRQ_PIN, true);
gpio.output(NRF24L01_EN_PIN);
gpio.output(NRF24L01_CS_PIN);
gpio.write(NRF24L01_EN_PIN, 0);
csnHigh();
arch.delay_ms(5);
// Reset NRF_CONFIG and enable 16-bit CRC.
writeRegister(NRF_CONFIG, 0b00001100);
// Set 1500uS (minimum for 32B payload in ESB@250KBPS) timeouts, to make testing a little easier
// WARNING: If this is ever lowered, either 250KBS mode with AA is broken or maximum packet
// sizes must never be used. See documentation for a more complete explanation.
setRetries(5, 10);
// Reset value is MAX
setPALevel(RF24_PA_MAX);
setDataRate(RF24_1MBPS);
// Reset value is "enabled on all pipes"
setAutoAck(1);
toggleFeatures();
writeRegister(FEATURE, 0);
writeRegister(DYNPD, 0);
dynamic_payloads_enabled = false;
// Reset current status
// Notice reset and flush is the last thing we do
writeRegister(NRF_STATUS, (1 << RX_DR) | (1 << TX_DS) | (1 << MAX_RT));
// Set up default configuration. Callers can always change it later.
// This channel should be universally safe and not bleed over into adjacent
// spectrum.
setChannel(76);
// Flush buffers
flushRx();
flushTx();
maskIRQ(true, false, false);
powerUp(); //Power up by default when begin() is called
// Enable PTX, do not write CE high so radio will remain in standby I mode ( 130us max to transition to RX or TX instead of 1500us from powerUp )
// PTX should use only 22uA of power
writeRegister(NRF_CONFIG, (readRegister(NRF_CONFIG)) & ~(1 << PRIM_RX));
}
/*
int Nrf24l01::init(uint8_t addr, uint8_t channel, rf24_datarate_e datarate){
if(channel > 125){
return -1;
}
unsigned char node_addr[5] = {addr, 'x', 'S', 'D', 'P'};
setAutoAck(1);
enableAckPayload();
maskIRQ(true, true, false);
enableDynamicPayloads();
setPALevel(RF24_PA_MAX);
setChannel(channel);
setDataRate(datarate);
openWritingPipe((const uint8_t*)GATEWAY_NAME); // GATEWAY_NAME is defined in the MSP430FR5969 RF24_arch_config.h
currentWritingPipe = 0;
openReadingPipe(1, node_addr);
#ifdef CONFIG_Apps_SolarDoorplate_PacketHandler
node_addr[0] = CONFIG_PACKETHANDLER_BROADCAST_ID;
openReadingPipe(2, node_addr);
#endif
if(getChannel() != channel){
return -2;
}
if(getDataRate() != datarate){
return -3;
}
return 0;
}
*/
//Power up now. Radio will not power down unless instructed by MCU for config changes etc.
void Nrf24l01::powerUp(void)
{
uint8_t cfg = readRegister(NRF_CONFIG);
// if not powered up then power up and wait for the radio to initialize
if (!(cfg & (1 << PWR_UP)))
{
writeRegister(NRF_CONFIG, cfg | (1 << PWR_UP));
// For nRF24L01+ to go from power down mode to TX or RX mode it must first pass through stand-by mode.
// There must be a delay of Tpd2stby (see Table 16.) after the nRF24L01+ leaves power down mode before
// the CEis set high. - Tpd2stby can be up to 5ms per the 1.0 datasheet
arch.delay_us(5);
}
}
void Nrf24l01::powerDown(void)
{
ceLow();
writeRegister(NRF_CONFIG, readRegister(NRF_CONFIG) & ~(1 << PWR_UP));
}
uint8_t Nrf24l01::getObserveTx(void)
{
return readRegister(OBSERVE_TX);
}
void Nrf24l01::setRetries(uint8_t delay, uint8_t count)
{
writeRegister(SETUP_RETR, (delay & 0xf) << ARD | (count & 0xf) << ARC);
}
void Nrf24l01::setPayloadSize(uint8_t size)
{
payload_size = rf24_min(size, 32);
}
void Nrf24l01::setPALevel(uint8_t level)
{
uint8_t setup = readRegister(RF_SETUP) & 0b11111000;
if (level > 3)
{ // If invalid level, go to max PA
level = (RF24_PA_MAX << 1) + 1; // +1 to support the SI24R1 chip extra bit
}
else
{
level = (level << 1) + 1; // Else set level as requested
}
writeRegister(RF_SETUP, setup |= level); // Write it to the chip
}
bool Nrf24l01::setDataRate(Nrf24l01::rf24_datarate_e speed)
{
bool result = false;
uint8_t setup = readRegister(RF_SETUP);
// HIGH and LOW '00' is 1Mbs - our default
setup &= ~((1 << RF_DR_LOW) | (1 << RF_DR_HIGH));
txRxDelay = 85;
if (speed == RF24_250KBPS)
{
// Must set the RF_DR_LOW to 1; RF_DR_HIGH (used to be RF_DR) is already 0
// Making it '10'.
setup |= (1 << RF_DR_LOW);
txRxDelay = 155;
}
else
{
// Set 2Mbs, RF_DR (RF_DR_HIGH) is set 1
// Making it '01'
if (speed == RF24_2MBPS)
{
setup |= (1 << RF_DR_HIGH);
txRxDelay = 65;
}
}
writeRegister(RF_SETUP, setup);
// Verify our result
if (readRegister(RF_SETUP) == setup)
{
result = true;
}
return result;
}
void Nrf24l01::toggleFeatures(void)
{
beginTransaction();
txbuf[0] = ACTIVATE;
txbuf[1] = 0x73;
spi.xmit(2, txbuf, 0, rxbuf);
endTransaction();
}
void Nrf24l01::enableAckPayload(void)
{
//
// enable ack payload and dynamic payload features
//
//toggle_features();
writeRegister(FEATURE, readRegister(FEATURE) | (1 << EN_ACK_PAY) | (1 << EN_DPL));
//IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n",read_register(FEATURE)));
//
// Enable dynamic payload on pipes 0 & 1
//
writeRegister(DYNPD, readRegister(DYNPD) | (1 << DPL_P1) | (1 << DPL_P0));
dynamic_payloads_enabled = true;
}
void Nrf24l01::setChannel(uint8_t channel)
{
writeRegister(RF_CH, rf24_min(channel, 125));
}
uint8_t Nrf24l01::write(const void *buf, uint8_t len, bool await_ack, bool blocking)
{
writePayload(buf, len, await_ack ? W_TX_PAYLOAD : W_TX_PAYLOAD_NO_ACK);
ceHigh();
if (!blocking)
{
arch.delay_us(10);
ceLow();
return 0;
}
while (!(getStatus() & ((1 << TX_DS) | (1 << MAX_RT))))
;
ceLow();
uint8_t status = writeRegister(NRF_STATUS, ((1 << TX_DS) | (1 << MAX_RT)));
if (status & (1 << MAX_RT))
{
flushTx();
return 0;
}
return 1;
}
void Nrf24l01::startListening(void)
{
writeRegister(NRF_CONFIG, readRegister(NRF_CONFIG) | (1 << PRIM_RX));
writeRegister(NRF_STATUS, (1 << RX_DR) | (1 << TX_DS) | (1 << MAX_RT));
ceHigh();
// Restore the pipe0 adddress, if exists
if (pipe0_reading_address[0] > 0)
{
writeRegister(RX_ADDR_P0, pipe0_reading_address, addr_width);
}
else
{
closeReadingPipe(0);
}
if (readRegister(FEATURE) & (1 << EN_ACK_PAY))
{
flushTx();
}
}
void Nrf24l01::stopListening(void)
{
ceLow();
arch.delay_us(txRxDelay);
if (readRegister(FEATURE) & (1 << EN_ACK_PAY))
{
arch.delay_us(txRxDelay); //200
flushTx();
}
//flush_rx();
writeRegister(NRF_CONFIG, (readRegister(NRF_CONFIG)) & ~(1 << PRIM_RX));
writeRegister(EN_RXADDR, readRegister(EN_RXADDR) | (1 << child_pipe_enable[0])); // Enable RX on pipe0
}
bool Nrf24l01::available(void)
{
return available(NULL);
}
/****************************************************************************/
bool Nrf24l01::available(uint8_t *pipe_num)
{
if (!(readRegister(FIFO_STATUS) & (1 << RX_EMPTY)))
{
// If the caller wants the pipe number, include that
if (pipe_num)
{
uint8_t status = getStatus();
*pipe_num = (status >> RX_P_NO) & 0b111;
}
return 1;
}
return 0;
}
bool Nrf24l01::testCarrier(void)
{
return (readRegister(CD) & 1);
}
/****************************************************************************/
bool Nrf24l01::testRPD(void)
{
return (readRegister(RPD) & 1);
}
void Nrf24l01::openReadingPipe(uint8_t child, const uint8_t *address)
{
// If this is pipe 0, cache the address. This is needed because
// openWritingPipe() will overwrite the pipe 0 address, so
// startListening() will have to restore it.
if (child == 0)
{
pipe0_reading_address[0] = address[0];
pipe0_reading_address[1] = address[1];
pipe0_reading_address[2] = address[2];
pipe0_reading_address[3] = address[3];
pipe0_reading_address[4] = address[4];
}
if (child <= 6)
{
// For pipes 2-5, only write the LSB
if (child < 2)
{
writeRegister(child_pipe[child], address, addr_width);
}
else
{
writeRegister(child_pipe[child], address, 1);
}
writeRegister(child_payload_size[child], payload_size);
// Note it would be more efficient to set all of the bits for all open
// pipes at once. However, I thought it would make the calling code
// more simple to do it this way.
writeRegister(EN_RXADDR, readRegister(EN_RXADDR) | (1 << child_pipe_enable[child]));
}
}
/****************************************************************************/
void Nrf24l01::closeReadingPipe(uint8_t pipe)
{
writeRegister(EN_RXADDR, readRegister(EN_RXADDR) & ~(1 << child_pipe_enable[pipe]));
}
/****************************************************************************/
void Nrf24l01::openWritingPipe(const uint8_t *address)
{
// Note that AVR 8-bit uC's store this LSB first, and the NRF24L01(+)
// expects it LSB first too, so we're good.
writeRegister(RX_ADDR_P0, address, addr_width);
writeRegister(TX_ADDR, address, addr_width);
//const uint8_t max_payload_size = 32;
//write_register(RX_PW_P0,rf24_min(payload_size,max_payload_size));
writeRegister(RX_PW_P0, payload_size);
}
void Nrf24l01::setAddressWidth(uint8_t a_width)
{
if (a_width -= 2)
{
writeRegister(SETUP_AW, a_width % 4);
addr_width = (a_width % 4) + 2;
}
}
void Nrf24l01::maskIRQ(bool tx, bool fail, bool rx)
{
uint8_t config = readRegister(NRF_CONFIG);
/* clear the interrupt flags */
config &= ~(1 << MASK_MAX_RT | 1 << MASK_TX_DS | 1 << MASK_RX_DR);
/* set the specified interrupt flags */
config |= fail << MASK_MAX_RT | tx << MASK_TX_DS | rx << MASK_RX_DR;
writeRegister(NRF_CONFIG, config);
}
uint8_t Nrf24l01::getStatus()
{
txbuf[0] = NOP;
beginTransaction();
spi.xmit(1, txbuf, 1, rxbuf);
endTransaction();
return rxbuf[0];
}
uint8_t Nrf24l01::readRegister(uint8_t reg)
{
txbuf[0] = R_REGISTER | (REGISTER_MASK & reg);
txbuf[1] = NOP;
beginTransaction();
spi.xmit(2, txbuf, 2, rxbuf);
endTransaction();
return rxbuf[1];
}
uint8_t Nrf24l01::writeRegister(uint8_t reg, const uint8_t *buf, uint8_t len)
{
txbuf[0] = W_REGISTER | (REGISTER_MASK & reg);
beginTransaction();
spi.xmit(1, txbuf, 1, rxbuf);
spi.xmit(len, (unsigned char *)buf, 0, NULL);
endTransaction();
return rxbuf[0];
}
uint8_t Nrf24l01::writeRegister(uint8_t reg, uint8_t value)
{
txbuf[0] = W_REGISTER | (REGISTER_MASK & reg);
txbuf[1] = value;
beginTransaction();
spi.xmit(2, txbuf, 1, rxbuf);
endTransaction();
return rxbuf[0];
}
uint8_t Nrf24l01::readPayload(void *buf, uint8_t data_len)
{
uint8_t status;
uint8_t *current = reinterpret_cast<uint8_t *>(buf);
if (data_len > payload_size)
data_len = payload_size;
uint8_t blank_len = dynamic_payloads_enabled ? 0 : payload_size - data_len;
beginTransaction();
txbuf[0] = R_RX_PAYLOAD;
spi.xmit(1, txbuf, 1, rxbuf);
status = rxbuf[0];
txbuf[0] = 0xf;
;
while (data_len--)
{
spi.xmit(1, txbuf, 1, rxbuf);
*current++ = rxbuf[0];
}
while (blank_len--)
{
spi.xmit(1, txbuf, 1, rxbuf);
}
endTransaction();
return status;
}
void Nrf24l01::read(void *buf, uint8_t len)
{
// Fetch the payload
readPayload(buf, len);
//Clear the two possible interrupt flags with one command
writeRegister(NRF_STATUS, (1 << RX_DR) | (1 << MAX_RT) | (1 << TX_DS));
}
void Nrf24l01::setDynamicPayloads(const bool enabled)
{
if (enabled)
{
writeRegister(FEATURE, readRegister(FEATURE) | (1 << EN_DPL));
writeRegister(DYNPD, readRegister(DYNPD) | (1 << DPL_P5) | (1 << DPL_P4) | (1 << DPL_P3) | (1 << DPL_P2) | (1 << DPL_P1) | (1 << DPL_P0));
}
else
{
writeRegister(FEATURE, readRegister(FEATURE) & ~(1 << EN_DPL));
writeRegister(DYNPD, readRegister(DYNPD) & ~((1 << DPL_P5) | (1 << DPL_P4) | (1 << DPL_P3) | (1 << DPL_P2) | (1 << DPL_P1) | (1 << DPL_P0)));
}
dynamic_payloads_enabled = enabled;
}
void Nrf24l01::setDynamicAck(const bool enabled)
{
if (enabled)
{
writeRegister(FEATURE, readRegister(FEATURE) | (1 << EN_DYN_ACK));
}
else
{
writeRegister(FEATURE, readRegister(FEATURE) & ~(1 << EN_DYN_ACK));
}
}
void Nrf24l01::setAutoAck(bool enable)
{
if (enable)
writeRegister(EN_AA, 0b111111);
else
writeRegister(EN_AA, 0);
}
void Nrf24l01::setAutoAck(uint8_t pipe, bool enable)
{
if (pipe <= 6)
{
uint8_t en_aa = readRegister(EN_AA);
if (enable)
{
en_aa |= (1 << pipe);
}
else
{
en_aa &= ~(1 << pipe);
}
writeRegister(EN_AA, en_aa);
}
}
uint8_t Nrf24l01::writePayload(const void *buf, uint8_t data_len, const uint8_t writeType)
{
data_len = rf24_min(data_len, payload_size);
uint8_t blank_len = dynamic_payloads_enabled ? 0 : payload_size - data_len;
//printf("[Writing %u bytes %u blanks]",data_len,blank_len);
//IF_SERIAL_DEBUG( printf("[Writing %u bytes %u blanks]\n",data_len,blank_len); );
beginTransaction();
txbuf[0] = writeType;
spi.xmit(1, txbuf, 1, rxbuf);
spi.xmit(data_len, (unsigned char *)buf, 0, NULL);
txbuf[0] = 0;
while (blank_len--)
{
spi.xmit(1, txbuf, 0, NULL);
}
endTransaction();
return rxbuf[0];
}
uint8_t Nrf24l01::flushRx(void)
{
txbuf[0] = FLUSH_RX;
beginTransaction();
spi.xmit(1, txbuf, 1, rxbuf);
endTransaction();
return rxbuf[0];
}
/****************************************************************************/
uint8_t Nrf24l01::flushTx(void)
{
txbuf[0] = FLUSH_TX;
beginTransaction();
spi.xmit(1, txbuf, 1, rxbuf);
endTransaction();
return rxbuf[0];
}
Nrf24l01 nrf24l01;