-
Birte Kristina Friesel authoredBirte Kristina Friesel authored
udeflate.cc 12.75 KiB
/*
* Copyright 2021 Daniel Friesel
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include "lib/udeflate.h"
/*
* The compressed (inflated) input data.
*/
unsigned char *udeflate_input_now;
unsigned char *udeflate_input_end;
/*
* The decompressed (deflated) output stream.
*/
unsigned char *udeflate_output_now;
unsigned char *udeflate_output_end;
/*
* The current bit offset in the input stream, if any.
*
* Deflate streams are read from least to most significant bit.
* An offset of 1 indicates that the least significant bit is skipped
* (i.e., only bits 7, 6, 5, 4, 3, 2, and 1 are read).
*/
uint8_t udeflate_bit_offset = 0;
/*
* Base lengths for length codes (code 257 to 285).
* Code 257 corresponds to a copy of 3 bytes, etc.
*/
uint16_t const udeflate_length_offsets[] = {
3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, 35, 43, 51, 59,
67, 83, 99, 115, 131, 163, 195, 227, 258
};
/*
* Extra bits for length codes (code 257 to 285).
* Code 257 has no extra bits, code 265 has 1 extra bit
* (and indicates a length of 11 or 12 depending on its value), etc.
*/
uint8_t const udeflate_length_bits[] = {
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4,
5, 5, 5, 5, 0
};
// can also be expressed as (index < 4 || index == 28) ? 0 : (index-4) >> 2
/*
* Base distances for distance codes (code 0 to 29).
* Code 0 indicates a distance of 1, etc.
*/
uint16_t const udeflate_distance_offsets[] = {
1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385,
513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577
};
/*
* Extra bits for distance codes (code 0 to 29).
* Code 0 has no extra bits, code 4 has 1 bit, etc.
*/
uint8_t const udeflate_distance_bits[] = {
0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10,
10, 11, 11, 12, 12, 13, 13
};
// can also be expressed as index < 2 ? 0 : (index-2) >> 1
/*
* In block type 2 (dynamic huffman codes), the code lengths of literal/length
* and distance alphabet are themselves stored as huffman codes. To save space
* in case only a few code lengths are used, the code length codes are stored
* in the following order. This allows a few bits to be saved if some code
* lengths are unused and the unused code lengths are at the end of the list.
*/
uint8_t const udeflate_hclen_index[] = {
16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15
};
/*
* Code lengths of the "code length" code (see above).
*/
uint8_t udeflate_hc_lengths[19];
/*
* Code lengths of the literal/length and distance alphabets.
*/
uint8_t udeflate_lld_lengths[318];
/*
* Assumptions:
* * huffman code length is limited to 11 bits
* * there are no more than 255 huffman codes with the same length
*
* Rationale: longer huffman codes might appear when handling large data
* sets. We don't do that; instead, we expect the uncompressed source to
* be no more than a few kB of data.
*/
/*
* Bit length counts and next code entries for Literal/Length alphabet.
* Combined with the code lengths in udeflate_lld_lengths, these make up the
* Literal/Length alphabet. See the algorithm in RFC 1951 section 3.2.2 for
* details.
*
* In udeflate, these variables are also used for the huffman alphabet in
* dynamic huffman blocks.
*/
uint8_t udeflate_bl_count_ll[12];
uint16_t udeflate_next_code_ll[12];
/*
* Bit length counts and next code entries for Distance alphabet.
*/
uint8_t udeflate_bl_count_d[12];
uint16_t udeflate_next_code_d[12];
static uint16_t udeflate_rev_word(uint16_t word, uint8_t bits)
{
uint16_t ret = 0;
uint16_t mask = 1;
for (uint16_t rmask = 1 << (bits - 1); rmask > 0; rmask >>= 1) {
if (word & rmask) {
ret |= mask;
}
mask <<= 1;
}
return ret;
}
static uint8_t udeflate_bitmask(uint8_t bit_count)
{
return (1 << bit_count) - 1;
}
static uint16_t udeflate_get_word()
{
uint16_t ret = 0;
ret |= (udeflate_input_now[0] >> udeflate_bit_offset);
ret |= (uint16_t) udeflate_input_now[1] << (8 - udeflate_bit_offset);
if (udeflate_bit_offset) {
ret |=
(uint16_t) (udeflate_input_now[2] &
udeflate_bitmask(udeflate_bit_offset)) << (16 -
udeflate_bit_offset);
}
#ifdef UDEFLATE_DEBUG
kout << "get_word = " << bin << ret << dec << endl;
#endif
return ret;
}
static uint16_t udeflate_get_bits(uint8_t num_bits)
{
uint16_t ret = udeflate_get_word();
udeflate_bit_offset += num_bits;
while (udeflate_bit_offset >= 8) {
udeflate_input_now++;
udeflate_bit_offset -= 8;
}
return ret & udeflate_bitmask(num_bits);
}
static void udeflate_build_alphabet(uint8_t * lengths, uint16_t size,
uint8_t * bl_count, uint16_t * next_code)
{
uint16_t i;
uint16_t code = 0;
uint16_t max_len = 0;
for (i = 0; i < 12; i++) {
bl_count[i] = 0;
}
for (i = 0; i < size; i++) {
if (lengths[i]) {
bl_count[lengths[i]]++;
}
if (lengths[i] > max_len) {
max_len = lengths[i];
}
}
for (i = 1; i < max_len + 1; i++) {
code = (code + bl_count[i - 1]) << 1;
next_code[i] = code;
}
#ifdef UDEFLATE_DEBUG
for (i = 0; i < 12; i++) {
kout << "bl_count[" << i << "] = " << bl_count[i] << endl;
}
for (i = 0; i < 12; i++) {
kout << "next_code[" << i << "] = " << next_code[i] << endl;
}
#endif
}
static uint16_t udeflate_huff(uint8_t * lengths, uint16_t size,
uint8_t * bl_count, uint16_t * next_code)
{
uint16_t next_word = udeflate_get_word();
for (uint8_t num_bits = 1; num_bits < 12; num_bits++) {
uint16_t next_bits = udeflate_rev_word(next_word, num_bits);
if (bl_count[num_bits] && next_bits >= next_code[num_bits]
&& next_bits < next_code[num_bits] + bl_count[num_bits]) {
#ifdef UDEFLATE_DEBUG
kout << "found huffman code, length = " << num_bits <<
endl;
#endif
udeflate_bit_offset += num_bits;
while (udeflate_bit_offset >= 8) {
udeflate_input_now++;
udeflate_bit_offset -= 8;
}
uint8_t len_pos = next_bits;
uint8_t cur_pos = next_code[num_bits];
for (uint16_t i = 0; i < size; i++) {
if (lengths[i] == num_bits) {
if (cur_pos == len_pos) {
return i;
}
cur_pos++;
}
}
}
}
return 65535;
}
static int8_t udeflate_huffman(uint8_t * ll_lengths, uint16_t ll_size,
uint8_t * d_lengths, uint8_t d_size)
{
uint16_t code;
uint16_t dcode;
while (1) {
code =
udeflate_huff(ll_lengths, ll_size, udeflate_bl_count_ll,
udeflate_next_code_ll);
#ifdef UDEFLATE_DEBUG
kout << "code " << code << endl;
#endif
if (code < 256) {
if (udeflate_output_now == udeflate_output_end) {
return UDEFLATE_ERR_OUTPUT_LENGTH;
}
*udeflate_output_now = code;
udeflate_output_now++;
} else if (code == 256) {
return 0;
} else {
uint16_t len_val = udeflate_length_offsets[code - 257];
uint8_t extra_bits = udeflate_length_bits[code - 257];
if (extra_bits) {
len_val += udeflate_get_bits(extra_bits);
}
dcode =
udeflate_huff(d_lengths, d_size,
udeflate_bl_count_d,
udeflate_next_code_d);
uint16_t dist_val = udeflate_distance_offsets[dcode];
extra_bits = udeflate_distance_bits[dcode];
if (extra_bits) {
dist_val += udeflate_get_bits(extra_bits);
}
while (len_val--) {
if (udeflate_output_now == udeflate_output_end) {
return UDEFLATE_ERR_OUTPUT_LENGTH;
}
udeflate_output_now[0] =
udeflate_output_now[-dist_val];
udeflate_output_now++;
}
}
if (udeflate_input_now >= udeflate_input_end - 4) {
return UDEFLATE_ERR_INPUT_LENGTH;
}
}
}
static int8_t udeflate_uncompressed()
{
udeflate_input_now++;
uint16_t len =
((uint16_t) udeflate_input_now[1] << 8) + udeflate_input_now[0];
uint16_t nlen =
((uint16_t) udeflate_input_now[3] << 8) + udeflate_input_now[2];
if (len & nlen) {
return UDEFLATE_ERR_NLEN;
}
udeflate_input_now += 4;
if (udeflate_input_now + len > udeflate_input_end) {
return UDEFLATE_ERR_INPUT_LENGTH;
}
if (udeflate_output_now + len > udeflate_output_end) {
return UDEFLATE_ERR_OUTPUT_LENGTH;
}
for (uint16_t i = 0; i < len; i++) {
*(udeflate_output_now++) = *(udeflate_input_now++);
}
return 0;
}
static int8_t udeflate_static_huffman()
{
uint16_t i;
for (i = 0; i <= 143; i++) {
udeflate_lld_lengths[i] = 8;
}
for (i = 144; i <= 255; i++) {
udeflate_lld_lengths[i] = 9;
}
for (i = 256; i <= 279; i++) {
udeflate_lld_lengths[i] = 7;
}
for (i = 280; i <= 285; i++) {
udeflate_lld_lengths[i] = 8;
}
for (i = 286; i <= 286 + 29; i++) {
udeflate_lld_lengths[i] = 5;
}
udeflate_build_alphabet(udeflate_lld_lengths, 286, udeflate_bl_count_ll,
udeflate_next_code_ll);
udeflate_build_alphabet(udeflate_lld_lengths + 286, 29,
udeflate_bl_count_d, udeflate_next_code_d);
return udeflate_huffman(udeflate_lld_lengths, 286,
udeflate_lld_lengths + 286, 29);
}
static int8_t udeflate_dynamic_huffman()
{
uint8_t i;
uint16_t hlit = 257 + udeflate_get_bits(5);
uint8_t hdist = 1 + udeflate_get_bits(5);
uint8_t hclen = 4 + udeflate_get_bits(4);
#ifdef UDEFLATE_DEBUG
kout << "hlit=" << hlit << endl;
kout << "hdist=" << hdist << endl;
kout << "hclen=" << hclen << endl;
#endif
for (i = 0; i < hclen; i++) {
udeflate_hc_lengths[udeflate_hclen_index[i]] =
udeflate_get_bits(3);
}
for (i = hclen; i < sizeof(udeflate_hc_lengths); i++) {
udeflate_hc_lengths[udeflate_hclen_index[i]] = 0;
}
udeflate_build_alphabet(udeflate_hc_lengths,
sizeof(udeflate_hc_lengths),
udeflate_bl_count_ll, udeflate_next_code_ll);
uint16_t items_processed = 0;
while (items_processed < hlit + hdist) {
uint8_t code =
udeflate_huff(udeflate_hc_lengths, 19, udeflate_bl_count_ll,
udeflate_next_code_ll);
#ifdef UDEFLATE_DEBUG
kout << "code = " << code << endl;
#endif
if (code == 16) {
uint8_t copy_count = 3 + udeflate_get_bits(2);
for (uint8_t i = 0; i < copy_count; i++) {
udeflate_lld_lengths[items_processed] =
udeflate_lld_lengths[items_processed - 1];
items_processed++;
}
} else if (code == 17) {
uint8_t null_count = 3 + udeflate_get_bits(3);
for (uint8_t i = 0; i < null_count; i++) {
udeflate_lld_lengths[items_processed] = 0;
items_processed++;
}
} else if (code == 18) {
uint8_t null_count = 11 + udeflate_get_bits(7);
for (uint8_t i = 0; i < null_count; i++) {
udeflate_lld_lengths[items_processed] = 0;
items_processed++;
}
} else {
udeflate_lld_lengths[items_processed] = code;
items_processed++;
}
}
udeflate_build_alphabet(udeflate_lld_lengths, hlit,
udeflate_bl_count_ll, udeflate_next_code_ll);
udeflate_build_alphabet(udeflate_lld_lengths + hlit, hdist,
udeflate_bl_count_d, udeflate_next_code_d);
return udeflate_huffman(udeflate_lld_lengths, hlit,
udeflate_lld_lengths + hlit, hdist);
}
int8_t udeflate(unsigned char *input_buf, uint16_t input_len,
unsigned char *output_buf, uint16_t output_len)
{
uint8_t is_final = input_buf[0] & 0x01;
uint8_t block_type = (input_buf[0] & 0x06) >> 1;
#ifdef UDEFLATE_DEBUG
kout << "is_final=" << is_final << " block_type=" << block_type << endl;
#endif
udeflate_input_now = input_buf;
udeflate_input_end = input_buf + input_len;
udeflate_bit_offset = 3;
udeflate_output_now = output_buf;
udeflate_output_end = output_buf + output_len;
if (block_type == 0) {
return udeflate_uncompressed();
}
if (block_type == 1) {
return udeflate_static_huffman();
}
if (block_type == 2) {
return udeflate_dynamic_huffman();
}
return UDEFLATE_ERR_BLOCK;
}
int8_t udeflate_zlib(unsigned char *input_buf, uint16_t input_len,
unsigned char *output_buf, uint16_t output_len)
{
if (input_len < 4) {
return UDEFLATE_ERR_INPUT_LENGTH;
}
uint8_t zlib_method = input_buf[0] & 0x0f;
uint8_t zlib_flags = input_buf[1];
#ifdef UDEFLATE_DEBUG
kout << "zlib_method=" << zlib_method << endl;
kout << "zlib_window_size=" << ((uint16_t) 1 <<
(8 +
((input_buf[0] & 0xf0) >> 4))) << endl;
#endif
if (zlib_method != 8) {
return UDEFLATE_ERR_METHOD;
}
if (zlib_flags & 0x20) {
return UDEFLATE_ERR_FDICT;
}
if ((((uint16_t) input_buf[0] << 8) | input_buf[1]) % 31) {
return UDEFLATE_ERR_FCHECK;
}
uint8_t ret =
udeflate(input_buf + 2, input_len - 2, output_buf, output_len);
#ifdef UDEFLATE_CHECKSUM
if (ret == 0) {
uint16_t udeflate_s1 = 1;
uint16_t udeflate_s2 = 0;
udeflate_output_end = udeflate_output_now;
for (udeflate_output_now = output_buf;
udeflate_output_now < udeflate_output_end;
udeflate_output_now++) {
udeflate_s1 =
((uint32_t) udeflate_s1 +
(uint32_t) (*udeflate_output_now)) % 65521;
udeflate_s2 =
((uint32_t) udeflate_s2 +
(uint32_t) udeflate_s1) % 65521;
}
if (udeflate_bit_offset) {
udeflate_input_now++;
}
if ((udeflate_s2 !=
(((uint16_t) udeflate_input_now[0] << 8) | (uint16_t)
udeflate_input_now[1]))
|| (udeflate_s1 !=
(((uint16_t) udeflate_input_now[2] << 8) | (uint16_t)
udeflate_input_now[3]))) {
return UDEFLATE_ERR_CHECKSUM;
}
}
#endif
return ret;
}