Newer
Older
* Copyright 2021 Daniel Friesel
*
* SPDX-License-Identifier: BSD-2-Clause
*/
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
/*
* The compressed (inflated) input data.
*/
unsigned char *deflate_input_now;
unsigned char *deflate_input_end;
/*
* The decompressed (deflated) output stream.
*/
unsigned char *deflate_output_now;
unsigned char *deflate_output_end;
/*
* The current bit offset in the input stream, if any.
*
* Deflate streams are read from least to most significant bit.
* An offset of 1 indicates that the least significant bit is skipped
* (i.e., only bits 7, 6, 5, 4, 3, 2, and 1 are read).
*/
uint8_t deflate_bit_offset = 0;
/*
* Base lengths for length codes (code 257 to 285).
* Code 257 corresponds to a copy of 3 bytes, etc.
*/
uint16_t const deflate_length_offsets[] = {
3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, 35, 43, 51, 59,
67, 83, 99, 115, 131, 163, 195, 227, 258
};
/*
* Extra bits for length codes (code 257 to 285).
* Code 257 has no extra bits, code 265 has 1 extra bit
* (and indicates a length of 11 or 12 depending on its value), etc.
*/
uint8_t const deflate_length_bits[] = {
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4,
5, 5, 5, 5, 0
};
// can also be expressed as (index < 4 || index == 28) ? 0 : (index-4) >> 2
/*
* Base distances for distance codes (code 0 to 29).
* Code 0 indicates a distance of 1, etc.
*/
uint16_t const deflate_distance_offsets[] = {
1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385,
513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577
};
/*
* Extra bits for distance codes (code 0 to 29).
* Code 0 has no extra bits, code 4 has 1 bit, etc.
*/
uint8_t const deflate_distance_bits[] = {
0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10,
10, 11, 11, 12, 12, 13, 13
};
// can also be expressed as index < 2 ? 0 : (index-2) >> 1
/*
* In block type 2 (dynamic huffman codes), the code lengths of literal/length
* and distance alphabet are themselves stored as huffman codes. To save space
* in case only a few code lengths are used, the code length codes are stored
* in the following order. This allows a few bits to be saved if some code
* lengths are unused and the unused code lengths are at the end of the list.
*/
uint8_t const deflate_hclen_index[] = {
16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15
};
/*
* Code lengths of the "code length" code (see above).
*/
uint8_t deflate_hc_lengths[19];
/*
* Code lengths of the literal/length and distance alphabets.
* up to 288 literal/length codes + up to 30 distance codes.
*/
uint8_t deflate_lld_lengths[318];
/*
* Bit length counts and next code entries for Literal/Length alphabet.
* Combined with the code lengths in deflate_lld_lengths, these make up the
* Literal/Length alphabet. See the algorithm in RFC 1951 section 3.2.2 for
* details.
*
* Assumption: There are no more than 255 huffman codes with the same length.
* As the largest alphabet (the literal/length alphabet) contains just 288
* codes in total, this should be reasonable.
*
* These variables are also used for the huffman alphabet in dynamic huffman
* blocks.
uint8_t deflate_bl_count_ll[16];
uint16_t deflate_next_code_ll[16];
* Bit length counts and next code entries for Distance alphabet. Note that,
* even though there are just 30 different distance codes, individual
* codes may be up to 16 bits long.
uint8_t deflate_bl_count_d[16];
uint16_t deflate_next_code_d[16];
static uint16_t deflate_rev_word(uint16_t word, uint8_t bits)
{
uint16_t ret = 0;
uint16_t mask = 1;
for (uint16_t rmask = 1 << (bits - 1); rmask > 0; rmask >>= 1) {
if (word & rmask) {
ret |= mask;
}
mask <<= 1;
}
return ret;
}
static uint16_t deflate_bitmask(uint8_t bit_count)
{
return (1 << bit_count) - 1;
}
static uint16_t deflate_get_word()
{
uint16_t ret = 0;
ret |= (deflate_input_now[0] >> deflate_bit_offset);
ret |= (uint16_t) deflate_input_now[1] << (8 - deflate_bit_offset);
if (deflate_bit_offset) {
ret |=
(uint16_t) (deflate_input_now[2] &
deflate_bitmask(deflate_bit_offset)) << (16 -
}
return ret;
}
static uint16_t deflate_get_bits(uint8_t num_bits)
{
uint16_t ret = deflate_get_word();
deflate_bit_offset += num_bits;
while (deflate_bit_offset >= 8) {
deflate_input_now++;
deflate_bit_offset -= 8;
}
return ret & deflate_bitmask(num_bits);
}
static void deflate_build_alphabet(uint8_t * lengths, uint16_t size,
uint8_t * bl_count, uint16_t * next_code)
{
uint16_t i;
uint16_t code = 0;
uint16_t max_len = 0;
for (i = 0; i < 16; i++) {
bl_count[i] = 0;
}
for (i = 0; i < size; i++) {
if (lengths[i]) {
bl_count[lengths[i]]++;
}
if (lengths[i] > max_len) {
max_len = lengths[i];
}
}
for (i = 1; i < max_len + 1; i++) {
code = (code + bl_count[i - 1]) << 1;
next_code[i] = code;
}
}
/*
* This function trades speed for low memory requirements. Instead of building
* an actual huffman tree (at a cost of about 650 Bytes of RAM), we iterate
* through the code lengths whenever we have found a huffman code. This is
* very slow, but memory-efficient.
*/
static uint16_t deflate_huff(uint8_t * lengths, uint16_t size,
uint8_t * bl_count, uint16_t * next_code)
{
uint16_t next_word = deflate_get_word();
for (uint8_t num_bits = 1; num_bits < 16; num_bits++) {
uint16_t next_bits = deflate_rev_word(next_word, num_bits);
if (bl_count[num_bits] && next_bits >= next_code[num_bits]
&& next_bits < next_code[num_bits] + bl_count[num_bits]) {
deflate_bit_offset += num_bits;
while (deflate_bit_offset >= 8) {
deflate_input_now++;
deflate_bit_offset -= 8;
}
uint8_t len_pos = next_bits;
uint8_t cur_pos = next_code[num_bits];
// This is slow, but memory-efficient
for (uint16_t i = 0; i < size; i++) {
if (lengths[i] == num_bits) {
if (cur_pos == len_pos) {
return i;
}
cur_pos++;
}
}
}
}
return 65535;
}
static int8_t deflate_huffman(uint8_t * ll_lengths, uint16_t ll_size,
uint8_t * d_lengths, uint8_t d_size)
{
uint16_t code;
uint16_t dcode;
while (1) {
code =
deflate_huff(ll_lengths, ll_size, deflate_bl_count_ll,
if (code < 256) {
if (deflate_output_now == deflate_output_end) {
return DEFLATE_ERR_OUTPUT_LENGTH;
}
*deflate_output_now = code;
deflate_output_now++;
} else if (code == 256) {
return 0;
} else if (code == 65535) {
return DEFLATE_ERR_HUFFMAN;
} else {
uint16_t len_val = deflate_length_offsets[code - 257];
uint8_t extra_bits = deflate_length_bits[code - 257];
if (extra_bits) {
len_val += deflate_get_bits(extra_bits);
}
dcode =
deflate_huff(d_lengths, d_size,
deflate_bl_count_d,
deflate_next_code_d);
uint16_t dist_val = deflate_distance_offsets[dcode];
extra_bits = deflate_distance_bits[dcode];
if (extra_bits) {
dist_val += deflate_get_bits(extra_bits);
}
while (len_val--) {
if (deflate_output_now == deflate_output_end) {
return DEFLATE_ERR_OUTPUT_LENGTH;
}
deflate_output_now[0] =
deflate_output_now++;
}
}
if (deflate_input_now >= deflate_input_end - 4) {
return DEFLATE_ERR_INPUT_LENGTH;
}
}
}
static int8_t deflate_uncompressed()
{
if (deflate_bit_offset) {
deflate_input_now++;
deflate_bit_offset = 0;
}
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
uint16_t len =
((uint16_t) deflate_input_now[1] << 8) + deflate_input_now[0];
uint16_t nlen =
((uint16_t) deflate_input_now[3] << 8) + deflate_input_now[2];
if (len & nlen) {
return DEFLATE_ERR_NLEN;
}
deflate_input_now += 4;
if (deflate_input_now + len >= deflate_input_end) {
return DEFLATE_ERR_INPUT_LENGTH;
}
if (deflate_output_now + len >= deflate_output_end) {
return DEFLATE_ERR_OUTPUT_LENGTH;
}
for (uint16_t i = 0; i < len; i++) {
*(deflate_output_now++) = *(deflate_input_now++);
}
return 0;
}
static int8_t deflate_static_huffman()
{
uint16_t i;
for (i = 0; i <= 143; i++) {
deflate_lld_lengths[i] = 8;
}
for (i = 144; i <= 255; i++) {
deflate_lld_lengths[i] = 9;
}
for (i = 256; i <= 279; i++) {
deflate_lld_lengths[i] = 7;
}
deflate_lld_lengths[i] = 5;
}
deflate_build_alphabet(deflate_lld_lengths, 288, deflate_bl_count_ll,
deflate_build_alphabet(deflate_lld_lengths + 288, 29,
deflate_bl_count_d, deflate_next_code_d);
return deflate_huffman(deflate_lld_lengths, 288,
deflate_lld_lengths + 288, 29);
}
static int8_t deflate_dynamic_huffman()
{
uint8_t i;
uint16_t hlit = 257 + deflate_get_bits(5);
uint8_t hdist = 1 + deflate_get_bits(5);
uint8_t hclen = 4 + deflate_get_bits(4);
for (i = 0; i < hclen; i++) {
deflate_hc_lengths[deflate_hclen_index[i]] =
deflate_get_bits(3);
}
for (i = hclen; i < sizeof(deflate_hc_lengths); i++) {
deflate_hc_lengths[deflate_hclen_index[i]] = 0;
}
deflate_build_alphabet(deflate_hc_lengths,
sizeof(deflate_hc_lengths),
deflate_bl_count_ll, deflate_next_code_ll);
uint16_t items_processed = 0;
while (items_processed < hlit + hdist) {
uint8_t code =
deflate_huff(deflate_hc_lengths, sizeof(deflate_hc_lengths),
deflate_bl_count_ll,
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
if (code == 16) {
uint8_t copy_count = 3 + deflate_get_bits(2);
for (uint8_t i = 0; i < copy_count; i++) {
deflate_lld_lengths[items_processed] =
deflate_lld_lengths[items_processed - 1];
items_processed++;
}
} else if (code == 17) {
uint8_t null_count = 3 + deflate_get_bits(3);
for (uint8_t i = 0; i < null_count; i++) {
deflate_lld_lengths[items_processed] = 0;
items_processed++;
}
} else if (code == 18) {
uint8_t null_count = 11 + deflate_get_bits(7);
for (uint8_t i = 0; i < null_count; i++) {
deflate_lld_lengths[items_processed] = 0;
items_processed++;
}
} else {
deflate_lld_lengths[items_processed] = code;
items_processed++;
}
}
deflate_build_alphabet(deflate_lld_lengths, hlit,
deflate_bl_count_ll, deflate_next_code_ll);
deflate_build_alphabet(deflate_lld_lengths + hlit, hdist,
deflate_bl_count_d, deflate_next_code_d);
return deflate_huffman(deflate_lld_lengths, hlit,
deflate_lld_lengths + hlit, hdist);
int16_t inflate(unsigned char *input_buf, uint16_t input_len,
unsigned char *output_buf, uint16_t output_len)
{
deflate_input_now = input_buf;
deflate_input_end = input_buf + input_len;
deflate_bit_offset = 0;
deflate_output_now = output_buf;
deflate_output_end = output_buf + output_len;
while (1) {
uint8_t block_type = deflate_get_bits(3);
uint8_t is_final = block_type & 0x01;
int8_t ret;
block_type >>= 1;
switch (block_type) {
case 0:
ret = deflate_uncompressed();
break;
case 1:
ret = deflate_static_huffman();
break;
case 2:
ret = deflate_dynamic_huffman();
break;
default:
return DEFLATE_ERR_BLOCK;
}
if (ret < 0) {
return ret;
}
if (is_final) {
return deflate_output_now - output_buf;
}
}
int16_t inflate_zlib(unsigned char *input_buf, uint16_t input_len,
unsigned char *output_buf, uint16_t output_len)
{
if (input_len < 4) {
return DEFLATE_ERR_INPUT_LENGTH;
}
uint8_t zlib_method = input_buf[0] & 0x0f;
uint8_t zlib_flags = input_buf[1];
if (zlib_method != 8) {
return DEFLATE_ERR_METHOD;
}
if (zlib_flags & 0x20) {
return DEFLATE_ERR_FDICT;
}
if ((((uint16_t) input_buf[0] << 8) | input_buf[1]) % 31) {
return DEFLATE_ERR_FCHECK;
}
int16_t ret =
inflate(input_buf + 2, input_len - 2, output_buf, output_len);
if (ret >= 0) {
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
uint16_t deflate_s1 = 1;
uint16_t deflate_s2 = 0;
deflate_output_end = deflate_output_now;
for (deflate_output_now = output_buf;
deflate_output_now < deflate_output_end;
deflate_output_now++) {
deflate_s1 =
((uint32_t) deflate_s1 +
(uint32_t) (*deflate_output_now)) % 65521;
deflate_s2 =
((uint32_t) deflate_s2 +
(uint32_t) deflate_s1) % 65521;
}
if (deflate_bit_offset) {
deflate_input_now++;
}
if ((deflate_s2 !=
(((uint16_t) deflate_input_now[0] << 8) | (uint16_t)
deflate_input_now[1]))
|| (deflate_s1 !=
(((uint16_t) deflate_input_now[2] << 8) | (uint16_t)
deflate_input_now[3]))) {
return DEFLATE_ERR_CHECKSUM;
}
}
#endif
return ret;
}