Skip to content
Snippets Groups Projects
bme280.cc 36.3 KiB
Newer Older
  • Learn to ignore specific revisions
  • Daniel Friesel's avatar
    Daniel Friesel committed
    /*
     *          /\
     *         /  \
     *        / !! \
     *       /______\
     *
     * In order to use the I2C interface, CSB needs to be pulled up before turning
     * on VDDIO (and after VDD). On most BME280 breakout boards sold on
     * AliExpress and similar sites, VDD and VDDIO are connected and there is only
     * one external VCC input, so following the power sequence outlined in the
     * datasheet is not possible. Additionally, the pull-up resistor connecting
     * CSB to VCC may delay logic high level on CSB long enough for the BM280
     * to start in SPI mode.
     *
     * In this case, you should connect (or power up, when using GPIO power)
     * breakout board pins in the following order:
     * * GND, SDA, SCLD
     * * CSB to 3V3
     * * VDD to 3V3
     */
    
    /**\mainpage
     * Copyright (C) 2018 - 2019 Bosch Sensortec GmbH
     *
    
     * SPDX-License-Identifier: BSD-3-Clause
     *
    
    Daniel Friesel's avatar
    Daniel Friesel committed
     * Redistribution and use in source and binary forms, with or without
     * modification, are permitted provided that the following conditions are met:
     *
     * Redistributions of source code must retain the above copyright
     * notice, this list of conditions and the following disclaimer.
     *
     * Redistributions in binary form must reproduce the above copyright
     * notice, this list of conditions and the following disclaimer in the
     * documentation and/or other materials provided with the distribution.
     *
     * Neither the name of the copyright holder nor the names of the
     * contributors may be used to endorse or promote products derived from
     * this software without specific prior written permission.
     *
     * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
     * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
     * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     * DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDER
     * OR CONTRIBUTORS BE LIABLE FOR ANY
     * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
     * OR CONSEQUENTIAL DAMAGES(INCLUDING, BUT NOT LIMITED TO,
     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
     * ANY WAY OUT OF THE USE OF THIS
     * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
     *
     * The information provided is believed to be accurate and reliable.
     * The copyright holder assumes no responsibility
     * for the consequences of use
     * of such information nor for any infringement of patents or
     * other rights of third parties which may result from its use.
     * No license is granted by implication or otherwise under any patent or
     * patent rights of the copyright holder.
     *
     * File     bme280.c
     * Date     26 Aug 2019
     * Version  3.3.7
     *
     */
    
    /*! @file bme280.c
     * @brief Sensor driver for BME280 sensor
     */
    #include "driver/bme280.h"
    
    /**\name Internal macros */
    /* To identify osr settings selected by user */
    #define OVERSAMPLING_SETTINGS   UINT8_C(0x07)
    
    /* To identify filter and standby settings selected by user */
    #define FILTER_STANDBY_SETTINGS UINT8_C(0x18)
    
    
    /****************** Global Function Definitions *******************************/
    
    /*!
     *  @brief This API is the entry point.
     *  It reads the chip-id and calibration data from the sensor.
     */
    int8_t BME280::init()
    {
        int8_t rslt;
    
        /* chip id read try count */
        uint8_t try_count = 5;
        uint8_t chip_id = 0;
    
        /* Check for null pointer in the device structure*/
        rslt = null_ptr_check();
    
        /* Proceed if null check is fine */
        if (rslt == BME280_OK)
        {
            while (try_count)
            {
                /* Read the chip-id of bme280 sensor */
    
                rslt = getRegs(BME280_CHIP_ID_ADDR, &chip_id, 1);
    
    Daniel Friesel's avatar
    Daniel Friesel committed
    
                /* Check for chip id validity */
                if ((rslt == BME280_OK) && (chip_id == BME280_CHIP_ID))
                {
                    /* Reset the sensor */
    
    Daniel Friesel's avatar
    Daniel Friesel committed
                    if (rslt == BME280_OK)
                    {
                        /* Read the calibration data */
                        rslt = get_calib_data();
                    }
                    break;
                }
    
                /* Wait for 1 ms */
                delay_ms(1);
                --try_count;
            }
    
            /* Chip id check failed */
            if (!try_count)
            {
                rslt = BME280_E_DEV_NOT_FOUND;
            }
        }
    
        return rslt;
    }
    
    /*!
     * @brief This API reads the data from the given register address of the sensor.
     */
    
    int8_t BME280::getRegs(uint8_t reg_addr, uint8_t *reg_data, uint16_t len)
    
    Daniel Friesel's avatar
    Daniel Friesel committed
    {
        int8_t rslt;
    
        /* Check for null pointer in the device structure*/
        rslt = null_ptr_check();
    
        /* Proceed if null check is fine */
        if (rslt == BME280_OK)
        {
            /* If interface selected is SPI */
            if (intf != BME280_I2C_INTF)
            {
                reg_addr = reg_addr | 0x80;
            }
    
            /* Read the data  */
            rslt = read(dev_id, reg_addr, reg_data, len);
    
            /* Check for communication error */
            if (rslt != BME280_OK)
            {
                rslt = BME280_E_COMM_FAIL;
            }
        }
    
        return rslt;
    }
    
    /*!
     * @brief This API writes the given data to the register address
     * of the sensor.
     */
    
    int8_t BME280::setRegs(uint8_t *reg_addr, const uint8_t *reg_data, uint8_t len)
    
    Daniel Friesel's avatar
    Daniel Friesel committed
    {
        int8_t rslt;
        uint8_t temp_buff[20]; /* Typically not to write more than 10 registers */
    
        if (len > 10)
        {
            len = 10;
        }
        uint16_t temp_len;
        uint8_t reg_addr_cnt;
    
        /* Check for null pointer in the device structure*/
        rslt = null_ptr_check();
    
        /* Check for arguments validity */
        if ((rslt == BME280_OK) && (reg_addr != NULL) && (reg_data != NULL))
        {
            if (len != 0)
            {
                temp_buff[0] = reg_data[0];
    
                /* If interface selected is SPI */
                if (intf != BME280_I2C_INTF)
                {
                    for (reg_addr_cnt = 0; reg_addr_cnt < len; reg_addr_cnt++)
                    {
                        reg_addr[reg_addr_cnt] = reg_addr[reg_addr_cnt] & 0x7F;
                    }
                }
    
                /* Burst write mode */
                if (len > 1)
                {
                    /* Interleave register address w.r.t data for
                     * burst write
                     */
                    interleave_reg_addr(reg_addr, temp_buff, reg_data, len);
                    temp_len = ((len * 2) - 1);
                }
                else
                {
                    temp_len = len;
                }
                rslt = write(dev_id, reg_addr[0], temp_buff, temp_len);
    
                /* Check for communication error */
                if (rslt != BME280_OK)
                {
                    rslt = BME280_E_COMM_FAIL;
                }
            }
            else
            {
                rslt = BME280_E_INVALID_LEN;
            }
        }
        else
        {
            rslt = BME280_E_NULL_PTR;
        }
    
        return rslt;
    }
    
    /*!
     * @brief This API sets the oversampling, filter and standby duration
     * (normal mode) settings in the sensor.
     */
    
    int8_t BME280::setSensorSettings(uint8_t desired_settings)
    
    Daniel Friesel's avatar
    Daniel Friesel committed
    {
        int8_t rslt;
        uint8_t sensor_mode;
    
        /* Check for null pointer in the device structure*/
        rslt = null_ptr_check();
    
        /* Proceed if null check is fine */
        if (rslt == BME280_OK)
        {
    
            rslt = getSensorMode(&sensor_mode);
    
    Daniel Friesel's avatar
    Daniel Friesel committed
            if ((rslt == BME280_OK) && (sensor_mode != BME280_SLEEP_MODE))
            {
                rslt = put_device_to_sleep();
            }
            if (rslt == BME280_OK)
            {
                /* Check if user wants to change oversampling
                 * settings
                 */
                if (are_settings_changed(OVERSAMPLING_SETTINGS, desired_settings))
                {
                    rslt = set_osr_settings(desired_settings, &settings);
                }
    
                /* Check if user wants to change filter and/or
                 * standby settings
                 */
                if ((rslt == BME280_OK) && are_settings_changed(FILTER_STANDBY_SETTINGS, desired_settings))
                {
                    rslt = set_filter_standby_settings(desired_settings, &settings);
                }
            }
        }
    
        return rslt;
    }
    
    /*!
     * @brief This API gets the oversampling, filter and standby duration
     * (normal mode) settings from the sensor.
     */
    
    int8_t BME280::getSensorSettings()
    
    Daniel Friesel's avatar
    Daniel Friesel committed
    {
        int8_t rslt;
        uint8_t reg_data[4];
    
        /* Check for null pointer in the device structure*/
        rslt = null_ptr_check();
    
        /* Proceed if null check is fine */
        if (rslt == BME280_OK)
        {
    
            rslt = getRegs(BME280_CTRL_HUM_ADDR, reg_data, 4);
    
    Daniel Friesel's avatar
    Daniel Friesel committed
            if (rslt == BME280_OK)
            {
                parse_device_settings(reg_data, &settings);
            }
        }
    
        return rslt;
    }
    
    /*!
     * @brief This API sets the power mode of the sensor.
     */
    
    int8_t BME280::setSensorMode(uint8_t sensor_mode)
    
    Daniel Friesel's avatar
    Daniel Friesel committed
    {
        int8_t rslt;
        uint8_t last_set_mode;
    
        /* Check for null pointer in the device structure*/
        rslt = null_ptr_check();
        if (rslt == BME280_OK)
        {
    
            rslt = getSensorMode(&last_set_mode);
    
    Daniel Friesel's avatar
    Daniel Friesel committed
    
            /* If the sensor is not in sleep mode put the device to sleep
             * mode
             */
            if ((rslt == BME280_OK) && (last_set_mode != BME280_SLEEP_MODE))
            {
                rslt = put_device_to_sleep();
            }
    
            /* Set the power mode */
            if (rslt == BME280_OK)
            {
                rslt = write_power_mode(sensor_mode);
            }
        }
    
        return rslt;
    }
    
    /*!
     * @brief This API gets the power mode of the sensor.
     */
    
    int8_t BME280::getSensorMode(uint8_t *sensor_mode)
    
    Daniel Friesel's avatar
    Daniel Friesel committed
    {
        int8_t rslt;
    
        /* Check for null pointer in the device structure*/
        rslt = null_ptr_check();
        if (rslt == BME280_OK)
        {
            /* Read the power mode register */
    
            rslt = getRegs(BME280_PWR_CTRL_ADDR, sensor_mode, 1);
    
    Daniel Friesel's avatar
    Daniel Friesel committed
    
            /* Assign the power mode in the device structure */
            *sensor_mode = BME280_GET_BITS_POS_0(*sensor_mode, BME280_SENSOR_MODE);
        }
    
        return rslt;
    }
    
    /*!
     * @brief This API performs the soft reset of the sensor.
     */
    
    int8_t BME280::softReset()
    
    Daniel Friesel's avatar
    Daniel Friesel committed
    {
        int8_t rslt;
        uint8_t reg_addr = BME280_RESET_ADDR;
        uint8_t status_reg = 0;
        uint8_t try_run = 5;
    
        /* 0xB6 is the soft reset command */
        uint8_t soft_rst_cmd = BME280_SOFT_RESET_COMMAND;
    
        /* Check for null pointer in the device structure*/
        rslt = null_ptr_check();
    
        /* Proceed if null check is fine */
        if (rslt == BME280_OK)
        {
            /* Write the soft reset command in the sensor */
    
            rslt = setRegs(&reg_addr, &soft_rst_cmd, 1);
    
    Daniel Friesel's avatar
    Daniel Friesel committed
    
            if (rslt == BME280_OK)
            {
                /* If NVM not copied yet, Wait for NVM to copy */
                do
                {
                    /* As per data sheet - Table 1, startup time is 2 ms. */
                    delay_ms(2);
    
                    rslt = getRegs(BME280_STATUS_REG_ADDR, &status_reg, 1);
    
    Daniel Friesel's avatar
    Daniel Friesel committed
                } while ((rslt == BME280_OK) && (try_run--) && (status_reg & BME280_STATUS_IM_UPDATE));
    
                if (status_reg & BME280_STATUS_IM_UPDATE)
                {
                    rslt = BME280_E_NVM_COPY_FAILED;
                }
    
            }
        }
    
        return rslt;
    }
    
    /*!
     * @brief This API reads the pressure, temperature and humidity data from the
     * sensor, compensates the data and store it in the bme280_data structure
     * instance passed by the user.
     */
    
    int8_t BME280::getSensorData(uint8_t sensor_comp, struct bme280_data *comp_data)
    
    Daniel Friesel's avatar
    Daniel Friesel committed
    {
        int8_t rslt;
    
        /* Array to store the pressure, temperature and humidity data read from
         * the sensor
         */
        uint8_t reg_data[BME280_P_T_H_DATA_LEN] = { 0 };
        struct bme280_uncomp_data uncomp_data = { 0, 0, 0 };
    
        /* Check for null pointer in the device structure*/
        rslt = null_ptr_check();
        if ((rslt == BME280_OK) && (comp_data != NULL))
        {
            /* Read the pressure and temperature data from the sensor */
    
            rslt = getRegs(BME280_DATA_ADDR, reg_data, BME280_P_T_H_DATA_LEN);
    
    Daniel Friesel's avatar
    Daniel Friesel committed
            if (rslt == BME280_OK)
            {
                /* Parse the read data from the sensor */
    
                parseSensorData(reg_data, &uncomp_data);
    
    Daniel Friesel's avatar
    Daniel Friesel committed
    
                /* Compensate the pressure and/or temperature and/or
                 * humidity data from the sensor
                 */
    
                rslt = compensateSensorData(sensor_comp, &uncomp_data, comp_data, &calib_data);
    
    Daniel Friesel's avatar
    Daniel Friesel committed
            }
        }
        else
        {
            rslt = BME280_E_NULL_PTR;
        }
    
        return rslt;
    }
    
    /*!
     *  @brief This API is used to parse the pressure, temperature and
     *  humidity data and store it in the bme280_uncomp_data structure instance.
     */
    
    void BME280::parseSensorData(const uint8_t *reg_data, struct bme280_uncomp_data *uncomp_data)
    
    Daniel Friesel's avatar
    Daniel Friesel committed
    {
        /* Variables to store the sensor data */
        uint32_t data_xlsb;
        uint32_t data_lsb;
        uint32_t data_msb;
    
        /* Store the parsed register values for pressure data */
        data_msb = (uint32_t)reg_data[0] << 12;
        data_lsb = (uint32_t)reg_data[1] << 4;
        data_xlsb = (uint32_t)reg_data[2] >> 4;
        uncomp_data->pressure = data_msb | data_lsb | data_xlsb;
    
        /* Store the parsed register values for temperature data */
        data_msb = (uint32_t)reg_data[3] << 12;
        data_lsb = (uint32_t)reg_data[4] << 4;
        data_xlsb = (uint32_t)reg_data[5] >> 4;
        uncomp_data->temperature = data_msb | data_lsb | data_xlsb;
    
        /* Store the parsed register values for temperature data */
        data_lsb = (uint32_t)reg_data[6] << 8;
        data_msb = (uint32_t)reg_data[7];
        uncomp_data->humidity = data_msb | data_lsb;
    }
    
    /*!
     * @brief This API is used to compensate the pressure and/or
     * temperature and/or humidity data according to the component selected
     * by the user.
     */
    
    int8_t BME280::compensateSensorData(uint8_t sensor_comp,
    
    Daniel Friesel's avatar
    Daniel Friesel committed
                                  const struct bme280_uncomp_data *uncomp_data,
                                  struct bme280_data *comp_data,
                                  struct bme280_calib_data *calib_data)
    {
        int8_t rslt = BME280_OK;
    
        if ((uncomp_data != NULL) && (comp_data != NULL) && (calib_data != NULL))
        {
            /* Initialize to zero */
            comp_data->temperature = 0;
            comp_data->pressure = 0;
            comp_data->humidity = 0;
    
            /* If pressure or temperature component is selected */
            if (sensor_comp & (BME280_PRESS | BME280_TEMP | BME280_HUM))
            {
                /* Compensate the temperature data */
                comp_data->temperature = compensate_temperature(uncomp_data, calib_data);
            }
            if (sensor_comp & BME280_PRESS)
            {
                /* Compensate the pressure data */
                comp_data->pressure = compensate_pressure(uncomp_data, calib_data);
            }
            if (sensor_comp & BME280_HUM)
            {
                /* Compensate the humidity data */
                comp_data->humidity = compensate_humidity(uncomp_data, calib_data);
            }
        }
        else
        {
            rslt = BME280_E_NULL_PTR;
        }
    
        return rslt;
    }
    
    /*!
     * @brief This internal API sets the oversampling settings for pressure,
     * temperature and humidity in the sensor.
     */
    int8_t BME280::set_osr_settings(uint8_t desired_settings,
                                   const struct bme280_settings *settings)
    {
        int8_t rslt = BME280_W_INVALID_OSR_MACRO;
    
        if (desired_settings & BME280_OSR_HUM_SEL)
        {
            rslt = set_osr_humidity_settings(settings);
        }
        if (desired_settings & (BME280_OSR_PRESS_SEL | BME280_OSR_TEMP_SEL))
        {
            rslt = set_osr_press_temp_settings(desired_settings, settings);
        }
    
        return rslt;
    }
    
    /*!
     * @brief This API sets the humidity oversampling settings of the sensor.
     */
    int8_t BME280::set_osr_humidity_settings(const struct bme280_settings *settings)
    {
        int8_t rslt;
        uint8_t ctrl_hum;
        uint8_t ctrl_meas;
        uint8_t reg_addr = BME280_CTRL_HUM_ADDR;
    
        ctrl_hum = settings->osr_h & BME280_CTRL_HUM_MSK;
    
        /* Write the humidity control value in the register */
    
        rslt = setRegs(&reg_addr, &ctrl_hum, 1);
    
    Daniel Friesel's avatar
    Daniel Friesel committed
    
        /* Humidity related changes will be only effective after a
         * write operation to ctrl_meas register
         */
        if (rslt == BME280_OK)
        {
            reg_addr = BME280_CTRL_MEAS_ADDR;
    
            rslt = getRegs(reg_addr, &ctrl_meas, 1);
    
    Daniel Friesel's avatar
    Daniel Friesel committed
            if (rslt == BME280_OK)
            {
    
                rslt = setRegs(&reg_addr, &ctrl_meas, 1);
    
    Daniel Friesel's avatar
    Daniel Friesel committed
            }
        }
    
        return rslt;
    }
    
    /*!
     * @brief This API sets the pressure and/or temperature oversampling settings
     * in the sensor according to the settings selected by the user.
     */
    int8_t BME280::set_osr_press_temp_settings(uint8_t desired_settings,
                                              const struct bme280_settings *settings)
    {
        int8_t rslt;
        uint8_t reg_addr = BME280_CTRL_MEAS_ADDR;
        uint8_t reg_data;
    
    
        rslt = BME280::getRegs(reg_addr, &reg_data, 1);
    
    Daniel Friesel's avatar
    Daniel Friesel committed
        if (rslt == BME280_OK)
        {
            if (desired_settings & BME280_OSR_PRESS_SEL)
            {
                fill_osr_press_settings(&reg_data, settings);
            }
            if (desired_settings & BME280_OSR_TEMP_SEL)
            {
                fill_osr_temp_settings(&reg_data, settings);
            }
    
            /* Write the oversampling settings in the register */
    
            rslt = BME280::setRegs(&reg_addr, &reg_data, 1);
    
    Daniel Friesel's avatar
    Daniel Friesel committed
        }
    
        return rslt;
    }
    
    /*!
     * @brief This internal API sets the filter and/or standby duration settings
     * in the sensor according to the settings selected by the user.
     */
    int8_t BME280::set_filter_standby_settings(uint8_t desired_settings,
                                              const struct bme280_settings *settings)
    {
        int8_t rslt;
        uint8_t reg_addr = BME280_CONFIG_ADDR;
        uint8_t reg_data;
    
    
        rslt = getRegs(reg_addr, &reg_data, 1);
    
    Daniel Friesel's avatar
    Daniel Friesel committed
        if (rslt == BME280_OK)
        {
            if (desired_settings & BME280_FILTER_SEL)
            {
                fill_filter_settings(&reg_data, settings);
            }
            if (desired_settings & BME280_STANDBY_SEL)
            {
                fill_standby_settings(&reg_data, settings);
            }
    
            /* Write the oversampling settings in the register */
    
            rslt = setRegs(&reg_addr, &reg_data, 1);
    
    Daniel Friesel's avatar
    Daniel Friesel committed
        }
    
        return rslt;
    }
    
    /*!
     * @brief This internal API fills the filter settings provided by the user
     * in the data buffer so as to write in the sensor.
     */
    void BME280::fill_filter_settings(uint8_t *reg_data, const struct bme280_settings *settings)
    {
        *reg_data = BME280_SET_BITS(*reg_data, BME280_FILTER, settings->filter);
    }
    
    /*!
     * @brief This internal API fills the standby duration settings provided by
     * the user in the data buffer so as to write in the sensor.
     */
    void BME280::fill_standby_settings(uint8_t *reg_data, const struct bme280_settings *settings)
    {
        *reg_data = BME280_SET_BITS(*reg_data, BME280_STANDBY, settings->standby_time);
    }
    
    /*!
     * @brief This internal API fills the pressure oversampling settings provided by
     * the user in the data buffer so as to write in the sensor.
     */
    void BME280::fill_osr_press_settings(uint8_t *reg_data, const struct bme280_settings *settings)
    {
        *reg_data = BME280_SET_BITS(*reg_data, BME280_CTRL_PRESS, settings->osr_p);
    }
    
    /*!
     * @brief This internal API fills the temperature oversampling settings
     * provided by the user in the data buffer so as to write in the sensor.
     */
    void BME280::fill_osr_temp_settings(uint8_t *reg_data, const struct bme280_settings *settings)
    {
        *reg_data = BME280_SET_BITS(*reg_data, BME280_CTRL_TEMP, settings->osr_t);
    }
    
    /*!
     * @brief This internal API parse the oversampling(pressure, temperature
     * and humidity), filter and standby duration settings and store in the
     * device structure.
     */
    void BME280::parse_device_settings(const uint8_t *reg_data, struct bme280_settings *settings)
    {
        settings->osr_h = BME280_GET_BITS_POS_0(reg_data[0], BME280_CTRL_HUM);
        settings->osr_p = BME280_GET_BITS(reg_data[2], BME280_CTRL_PRESS);
        settings->osr_t = BME280_GET_BITS(reg_data[2], BME280_CTRL_TEMP);
        settings->filter = BME280_GET_BITS(reg_data[3], BME280_FILTER);
        settings->standby_time = BME280_GET_BITS(reg_data[3], BME280_STANDBY);
    }
    
    /*!
     * @brief This internal API writes the power mode in the sensor.
     */
    int8_t BME280::write_power_mode(uint8_t sensor_mode)
    {
        int8_t rslt;
        uint8_t reg_addr = BME280_PWR_CTRL_ADDR;
    
        /* Variable to store the value read from power mode register */
        uint8_t sensor_mode_reg_val;
    
        /* Read the power mode register */
    
        rslt = getRegs(reg_addr, &sensor_mode_reg_val, 1);
    
    Daniel Friesel's avatar
    Daniel Friesel committed
    
        /* Set the power mode */
        if (rslt == BME280_OK)
        {
            sensor_mode_reg_val = BME280_SET_BITS_POS_0(sensor_mode_reg_val, BME280_SENSOR_MODE, sensor_mode);
    
            /* Write the power mode in the register */
    
            rslt = setRegs(&reg_addr, &sensor_mode_reg_val, 1);
    
    Daniel Friesel's avatar
    Daniel Friesel committed
        }
    
        return rslt;
    }
    
    /*!
     * @brief This internal API puts the device to sleep mode.
     */
    int8_t BME280::put_device_to_sleep()
    {
        int8_t rslt;
        uint8_t reg_data[4];
        struct bme280_settings settings;
    
    
        rslt = getRegs(BME280_CTRL_HUM_ADDR, reg_data, 4);
    
    Daniel Friesel's avatar
    Daniel Friesel committed
        if (rslt == BME280_OK)
        {
            parse_device_settings(reg_data, &settings);
    
    Daniel Friesel's avatar
    Daniel Friesel committed
            if (rslt == BME280_OK)
            {
                rslt = reload_device_settings(&settings);
            }
        }
    
        return rslt;
    }
    
    /*!
     * @brief This internal API reloads the already existing device settings in
     * the sensor after soft reset.
     */
    int8_t BME280::reload_device_settings(const struct bme280_settings *settings)
    {
        int8_t rslt;
    
        rslt = set_osr_settings(BME280_ALL_SETTINGS_SEL, settings);
        if (rslt == BME280_OK)
        {
            rslt = set_filter_standby_settings(BME280_ALL_SETTINGS_SEL, settings);
        }
    
        return rslt;
    }
    
    #ifdef BME280_FLOAT_ENABLE
    
    /*!
     * @brief This internal API is used to compensate the raw temperature data and
     * return the compensated temperature data in double data type.
     */
    double BME280::compensate_temperature(const struct bme280_uncomp_data *uncomp_data, struct bme280_calib_data *calib_data)
    {
        double var1;
        double var2;
        double temperature;
        double temperature_min = -40;
        double temperature_max = 85;
    
        var1 = ((double)uncomp_data->temperature) / 16384.0 - ((double)calib_data->dig_T1) / 1024.0;
        var1 = var1 * ((double)calib_data->dig_T2);
        var2 = (((double)uncomp_data->temperature) / 131072.0 - ((double)calib_data->dig_T1) / 8192.0);
        var2 = (var2 * var2) * ((double)calib_data->dig_T3);
        calib_data->t_fine = (int32_t)(var1 + var2);
        temperature = (var1 + var2) / 5120.0;
        if (temperature < temperature_min)
        {
            temperature = temperature_min;
        }
        else if (temperature > temperature_max)
        {
            temperature = temperature_max;
        }
    
        return temperature;
    }
    
    /*!
     * @brief This internal API is used to compensate the raw pressure data and
     * return the compensated pressure data in double data type.
     */
    double BME280::compensate_pressure(const struct bme280_uncomp_data *uncomp_data,
                                      const struct bme280_calib_data *calib_data)
    {
        double var1;
        double var2;
        double var3;
        double pressure;
        double pressure_min = 30000.0;
        double pressure_max = 110000.0;
    
        var1 = ((double)calib_data->t_fine / 2.0) - 64000.0;
        var2 = var1 * var1 * ((double)calib_data->dig_P6) / 32768.0;
        var2 = var2 + var1 * ((double)calib_data->dig_P5) * 2.0;
        var2 = (var2 / 4.0) + (((double)calib_data->dig_P4) * 65536.0);
        var3 = ((double)calib_data->dig_P3) * var1 * var1 / 524288.0;
        var1 = (var3 + ((double)calib_data->dig_P2) * var1) / 524288.0;
        var1 = (1.0 + var1 / 32768.0) * ((double)calib_data->dig_P1);
    
        /* avoid exception caused by division by zero */
        if (var1)
        {
            pressure = 1048576.0 - (double) uncomp_data->pressure;
            pressure = (pressure - (var2 / 4096.0)) * 6250.0 / var1;
            var1 = ((double)calib_data->dig_P9) * pressure * pressure / 2147483648.0;
            var2 = pressure * ((double)calib_data->dig_P8) / 32768.0;
            pressure = pressure + (var1 + var2 + ((double)calib_data->dig_P7)) / 16.0;
            if (pressure < pressure_min)
            {
                pressure = pressure_min;
            }
            else if (pressure > pressure_max)
            {
                pressure = pressure_max;
            }
        }
        else /* Invalid case */
        {
            pressure = pressure_min;
        }
    
        return pressure;
    }
    
    /*!
     * @brief This internal API is used to compensate the raw humidity data and
     * return the compensated humidity data in double data type.
     */
    double BME280::compensate_humidity(const struct bme280_uncomp_data *uncomp_data,
                                      const struct bme280_calib_data *calib_data)
    {
        double humidity;
        double humidity_min = 0.0;
        double humidity_max = 100.0;
        double var1;
        double var2;
        double var3;
        double var4;
        double var5;
        double var6;
    
        var1 = ((double)calib_data->t_fine) - 76800.0;
        var2 = (((double)calib_data->dig_H4) * 64.0 + (((double)calib_data->dig_H5) / 16384.0) * var1);
        var3 = uncomp_data->humidity - var2;
        var4 = ((double)calib_data->dig_H2) / 65536.0;
        var5 = (1.0 + (((double)calib_data->dig_H3) / 67108864.0) * var1);
        var6 = 1.0 + (((double)calib_data->dig_H6) / 67108864.0) * var1 * var5;
        var6 = var3 * var4 * (var5 * var6);
        humidity = var6 * (1.0 - ((double)calib_data->dig_H1) * var6 / 524288.0);
        if (humidity > humidity_max)
        {
            humidity = humidity_max;
        }
        else if (humidity < humidity_min)
        {
            humidity = humidity_min;
        }
    
        return humidity;
    }
    
    #else
    
    /*!
     * @brief This internal API is used to compensate the raw temperature data and
     * return the compensated temperature data in integer data type.
     */
    int32_t BME280::compensate_temperature(const struct bme280_uncomp_data *uncomp_data,
                                          struct bme280_calib_data *calib_data)
    {
        int32_t var1;
        int32_t var2;
        int32_t temperature;
        int32_t temperature_min = -4000;
        int32_t temperature_max = 8500;
    
        var1 = (int32_t)((uncomp_data->temperature / 8) - ((int32_t)calib_data->dig_T1 * 2));
        var1 = (var1 * ((int32_t)calib_data->dig_T2)) / 2048;
        var2 = (int32_t)((uncomp_data->temperature / 16) - ((int32_t)calib_data->dig_T1));
        var2 = (((var2 * var2) / 4096) * ((int32_t)calib_data->dig_T3)) / 16384;
        calib_data->t_fine = var1 + var2;
        temperature = (calib_data->t_fine * 5 + 128) / 256;
        if (temperature < temperature_min)
        {
            temperature = temperature_min;
        }
        else if (temperature > temperature_max)
        {
            temperature = temperature_max;
        }
    
        return temperature;
    }
    #ifdef BME280_64BIT_ENABLE
    
    /*!
     * @brief This internal API is used to compensate the raw pressure data and
     * return the compensated pressure data in integer data type with higher
     * accuracy.
     */
    uint32_t BME280::compensate_pressure(const struct bme280_uncomp_data *uncomp_data,
                                        const struct bme280_calib_data *calib_data)
    {
        int64_t var1;
        int64_t var2;
        int64_t var3;
        int64_t var4;
        uint32_t pressure;
        uint32_t pressure_min = 3000000;
        uint32_t pressure_max = 11000000;
    
        var1 = ((int64_t)calib_data->t_fine) - 128000;
        var2 = var1 * var1 * (int64_t)calib_data->dig_P6;
        var2 = var2 + ((var1 * (int64_t)calib_data->dig_P5) * 131072);
        var2 = var2 + (((int64_t)calib_data->dig_P4) * 34359738368);
        var1 = ((var1 * var1 * (int64_t)calib_data->dig_P3) / 256) + ((var1 * ((int64_t)calib_data->dig_P2) * 4096));
        var3 = ((int64_t)1) * 140737488355328;
        var1 = (var3 + var1) * ((int64_t)calib_data->dig_P1) / 8589934592;
    
        /* To avoid divide by zero exception */
        if (var1 != 0)
        {
            var4 = 1048576 - uncomp_data->pressure;
            var4 = (((var4 * INT64_C(2147483648)) - var2) * 3125) / var1;
            var1 = (((int64_t)calib_data->dig_P9) * (var4 / 8192) * (var4 / 8192)) / 33554432;
            var2 = (((int64_t)calib_data->dig_P8) * var4) / 524288;
            var4 = ((var4 + var1 + var2) / 256) + (((int64_t)calib_data->dig_P7) * 16);
            pressure = (uint32_t)(((var4 / 2) * 100) / 128);
            if (pressure < pressure_min)
            {
                pressure = pressure_min;
            }
            else if (pressure > pressure_max)
            {
                pressure = pressure_max;
            }
        }
        else
        {
            pressure = pressure_min;
        }
    
        return pressure;
    }
    #else
    
    /*!
     * @brief This internal API is used to compensate the raw pressure data and
     * return the compensated pressure data in integer data type.
     */
    uint32_t BME280::compensate_pressure(const struct bme280_uncomp_data *uncomp_data,
                                        const struct bme280_calib_data *calib_data)
    {
        int32_t var1;
        int32_t var2;
        int32_t var3;
        int32_t var4;
        uint32_t var5;
        uint32_t pressure;
        uint32_t pressure_min = 30000;
        uint32_t pressure_max = 110000;
    
        var1 = (((int32_t)calib_data->t_fine) / 2) - (int32_t)64000;
        var2 = (((var1 / 4) * (var1 / 4)) / 2048) * ((int32_t)calib_data->dig_P6);
        var2 = var2 + ((var1 * ((int32_t)calib_data->dig_P5)) * 2);
        var2 = (var2 / 4) + (((int32_t)calib_data->dig_P4) * 65536);
        var3 = (calib_data->dig_P3 * (((var1 / 4) * (var1 / 4)) / 8192)) / 8;
        var4 = (((int32_t)calib_data->dig_P2) * var1) / 2;
        var1 = (var3 + var4) / 262144;
        var1 = (((32768 + var1)) * ((int32_t)calib_data->dig_P1)) / 32768;
    
        /* avoid exception caused by division by zero */
        if (var1)
        {
            var5 = (uint32_t)((uint32_t)1048576) - uncomp_data->pressure;
            pressure = ((uint32_t)(var5 - (uint32_t)(var2 / 4096))) * 3125;
            if (pressure < 0x80000000)
            {
                pressure = (pressure << 1) / ((uint32_t)var1);
            }
            else
            {
                pressure = (pressure / (uint32_t)var1) * 2;
            }
            var1 = (((int32_t)calib_data->dig_P9) * ((int32_t)(((pressure / 8) * (pressure / 8)) / 8192))) / 4096;
            var2 = (((int32_t)(pressure / 4)) * ((int32_t)calib_data->dig_P8)) / 8192;
            pressure = (uint32_t)((int32_t)pressure + ((var1 + var2 + calib_data->dig_P7) / 16));
            if (pressure < pressure_min)
            {
                pressure = pressure_min;
            }
            else if (pressure > pressure_max)
            {
                pressure = pressure_max;
            }
        }
        else
        {
            pressure = pressure_min;
        }
    
        return pressure;
    }