Newer
Older
*
* Copyright (C) 2011 J. Coliz <maniacbug@ymail.com>
* Copyright (C) 2019 Daniel Friesel
*
* SPDX-License-Identifier: GPL-2.0-only
*/
#include <stdlib.h>
#include "driver/nrf24l01.h"
#include "driver/nrf24l01/registers.h"
#include "driver/gpio.h"
#include "arch.h"
#ifndef NRF24L01_EN_PIN
#error makeflag nrf24l01_en_pin required
#endif
#ifndef NRF24L01_CS_PIN
#error makeflag nrf24l01_cs_pin required
#endif
static const uint8_t child_pipe[] =
{
RX_ADDR_P0, RX_ADDR_P1, RX_ADDR_P2, RX_ADDR_P3, RX_ADDR_P4, RX_ADDR_P5};
static const uint8_t child_payload_size[] =
{
RX_PW_P0, RX_PW_P1, RX_PW_P2, RX_PW_P3, RX_PW_P4, RX_PW_P5};
static const uint8_t child_pipe_enable[] =
{
ERX_P0, ERX_P1, ERX_P2, ERX_P3, ERX_P4, ERX_P5};
gpio.output(NRF24L01_EN_PIN);
gpio.output(NRF24L01_CS_PIN);
gpio.write(NRF24L01_EN_PIN, 0);
csnHigh();
arch.delay_ms(5);
// Reset NRF_CONFIG and enable 16-bit CRC.
// Set 1500uS (minimum for 32B payload in ESB@250KBPS) timeouts, to make testing a little easier
// WARNING: If this is ever lowered, either 250KBS mode with AA is broken or maximum packet
// sizes must never be used. See documentation for a more complete explanation.
// Reset value is "enabled on all pipes"
setAutoAck(1);
toggleFeatures();
writeRegister(FEATURE, 0);
writeRegister(DYNPD, 0);
dynamic_payloads_enabled = false;
// Reset current status
// Notice reset and flush is the last thing we do
writeRegister(NRF_STATUS, (1 << RX_DR) | (1 << TX_DS) | (1 << MAX_RT));
// Set up default configuration. Callers can always change it later.
// This channel should be universally safe and not bleed over into adjacent
// spectrum.
setChannel(76);
// Flush buffers
flushRx();
flushTx();
maskIRQ(true, false, false);
powerUp(); //Power up by default when begin() is called
// Enable PTX, do not write CE high so radio will remain in standby I mode ( 130us max to transition to RX or TX instead of 1500us from powerUp )
// PTX should use only 22uA of power
writeRegister(NRF_CONFIG, (readRegister(NRF_CONFIG)) & ~(1 << PRIM_RX));
}
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
/*
int Nrf24l01::init(uint8_t addr, uint8_t channel, rf24_datarate_e datarate){
if(channel > 125){
return -1;
}
unsigned char node_addr[5] = {addr, 'x', 'S', 'D', 'P'};
setAutoAck(1);
enableAckPayload();
maskIRQ(true, true, false);
enableDynamicPayloads();
setPALevel(RF24_PA_MAX);
setChannel(channel);
setDataRate(datarate);
openWritingPipe((const uint8_t*)GATEWAY_NAME); // GATEWAY_NAME is defined in the MSP430FR5969 RF24_arch_config.h
currentWritingPipe = 0;
openReadingPipe(1, node_addr);
#ifdef CONFIG_Apps_SolarDoorplate_PacketHandler
node_addr[0] = CONFIG_PACKETHANDLER_BROADCAST_ID;
openReadingPipe(2, node_addr);
#endif
if(getChannel() != channel){
return -2;
}
if(getDataRate() != datarate){
return -3;
}
return 0;
}
*/
//Power up now. Radio will not power down unless instructed by MCU for config changes etc.
void Nrf24l01::powerUp(void)
{
uint8_t cfg = readRegister(NRF_CONFIG);
// if not powered up then power up and wait for the radio to initialize
if (!(cfg & (1 << PWR_UP)))
{
writeRegister(NRF_CONFIG, cfg | (1 << PWR_UP));
// For nRF24L01+ to go from power down mode to TX or RX mode it must first pass through stand-by mode.
// There must be a delay of Tpd2stby (see Table 16.) after the nRF24L01+ leaves power down mode before
// the CEis set high. - Tpd2stby can be up to 5ms per the 1.0 datasheet
writeRegister(NRF_CONFIG, readRegister(NRF_CONFIG) & ~(1 << PWR_UP));
}
uint8_t Nrf24l01::getObserveTx(void)
{
return readRegister(OBSERVE_TX);
}
void Nrf24l01::setRetries(uint8_t delay, uint8_t count)
{
writeRegister(SETUP_RETR, (delay & 0xf) << ARD | (count & 0xf) << ARC);
void Nrf24l01::setPayloadSize(uint8_t size)
{
payload_size = rf24_min(size, 32);
}
void Nrf24l01::setPALevel(uint8_t level)
{
uint8_t setup = readRegister(RF_SETUP) & 0b11111000;
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
if (level > 3)
{ // If invalid level, go to max PA
level = (RF24_PA_MAX << 1) + 1; // +1 to support the SI24R1 chip extra bit
}
else
{
level = (level << 1) + 1; // Else set level as requested
}
writeRegister(RF_SETUP, setup |= level); // Write it to the chip
}
bool Nrf24l01::setDataRate(Nrf24l01::rf24_datarate_e speed)
{
bool result = false;
uint8_t setup = readRegister(RF_SETUP);
// HIGH and LOW '00' is 1Mbs - our default
setup &= ~((1 << RF_DR_LOW) | (1 << RF_DR_HIGH));
txRxDelay = 85;
if (speed == RF24_250KBPS)
{
// Must set the RF_DR_LOW to 1; RF_DR_HIGH (used to be RF_DR) is already 0
// Making it '10'.
setup |= (1 << RF_DR_LOW);
txRxDelay = 155;
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
else
{
// Set 2Mbs, RF_DR (RF_DR_HIGH) is set 1
// Making it '01'
if (speed == RF24_2MBPS)
{
setup |= (1 << RF_DR_HIGH);
txRxDelay = 65;
}
}
writeRegister(RF_SETUP, setup);
// Verify our result
if (readRegister(RF_SETUP) == setup)
{
result = true;
}
return result;
}
void Nrf24l01::toggleFeatures(void)
{
beginTransaction();
txbuf[0] = ACTIVATE;
txbuf[1] = 0x73;
spi.xmit(2, txbuf, 0, rxbuf);
endTransaction();
}
void Nrf24l01::enableAckPayload(void)
{
//
// enable ack payload and dynamic payload features
//
//toggle_features();
writeRegister(FEATURE, readRegister(FEATURE) | (1 << EN_ACK_PAY) | (1 << EN_DPL));
//IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n",read_register(FEATURE)));
//
// Enable dynamic payload on pipes 0 & 1
//
writeRegister(DYNPD, readRegister(DYNPD) | (1 << DPL_P1) | (1 << DPL_P0));
dynamic_payloads_enabled = true;
}
void Nrf24l01::setChannel(uint8_t channel)
{
writeRegister(RF_CH, rf24_min(channel, 125));
}
uint8_t Nrf24l01::write(const void *buf, uint8_t len, bool await_ack, bool blocking)
writePayload(buf, len, await_ack ? W_TX_PAYLOAD : W_TX_PAYLOAD_NO_ACK);
return 0;
}
while (!(getStatus() & ((1 << TX_DS) | (1 << MAX_RT))))
;
uint8_t status = writeRegister(NRF_STATUS, ((1 << TX_DS) | (1 << MAX_RT)));
if (status & (1 << MAX_RT))
{
void Nrf24l01::startListening(void)
{
writeRegister(NRF_CONFIG, readRegister(NRF_CONFIG) | (1 << PRIM_RX));
writeRegister(NRF_STATUS, (1 << RX_DR) | (1 << TX_DS) | (1 << MAX_RT));
// Restore the pipe0 adddress, if exists
if (pipe0_reading_address[0] > 0)
{
writeRegister(RX_ADDR_P0, pipe0_reading_address, addr_width);
}
else
{
closeReadingPipe(0);
}
if (readRegister(FEATURE) & (1 << EN_ACK_PAY))
{
flushTx();
}
}
void Nrf24l01::stopListening(void)
{
arch.delay_us(txRxDelay);
if (readRegister(FEATURE) & (1 << EN_ACK_PAY))
{
arch.delay_us(txRxDelay); //200
flushTx();
}
//flush_rx();
writeRegister(NRF_CONFIG, (readRegister(NRF_CONFIG)) & ~(1 << PRIM_RX));
writeRegister(EN_RXADDR, readRegister(EN_RXADDR) | (1 << child_pipe_enable[0])); // Enable RX on pipe0
}
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
bool Nrf24l01::available(void)
{
return available(NULL);
}
/****************************************************************************/
bool Nrf24l01::available(uint8_t *pipe_num)
{
if (!(readRegister(FIFO_STATUS) & (1 << RX_EMPTY)))
{
// If the caller wants the pipe number, include that
if (pipe_num)
{
uint8_t status = getStatus();
*pipe_num = (status >> RX_P_NO) & 0b111;
}
return 1;
}
return 0;
}
bool Nrf24l01::testCarrier(void)
{
return (readRegister(CD) & 1);
}
/****************************************************************************/
bool Nrf24l01::testRPD(void)
{
return (readRegister(RPD) & 1);
}
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
void Nrf24l01::openReadingPipe(uint8_t child, const uint8_t *address)
{
// If this is pipe 0, cache the address. This is needed because
// openWritingPipe() will overwrite the pipe 0 address, so
// startListening() will have to restore it.
if (child == 0)
{
pipe0_reading_address[0] = address[0];
pipe0_reading_address[1] = address[1];
pipe0_reading_address[2] = address[2];
pipe0_reading_address[3] = address[3];
pipe0_reading_address[4] = address[4];
}
if (child <= 6)
{
// For pipes 2-5, only write the LSB
if (child < 2)
{
writeRegister(child_pipe[child], address, addr_width);
}
else
{
writeRegister(child_pipe[child], address, 1);
}
writeRegister(child_payload_size[child], payload_size);
// Note it would be more efficient to set all of the bits for all open
// pipes at once. However, I thought it would make the calling code
// more simple to do it this way.
writeRegister(EN_RXADDR, readRegister(EN_RXADDR) | (1 << child_pipe_enable[child]));
}
}
/****************************************************************************/
void Nrf24l01::closeReadingPipe(uint8_t pipe)
{
writeRegister(EN_RXADDR, readRegister(EN_RXADDR) & ~(1 << child_pipe_enable[pipe]));
}
/****************************************************************************/
void Nrf24l01::openWritingPipe(const uint8_t *address)
{
// Note that AVR 8-bit uC's store this LSB first, and the NRF24L01(+)
// expects it LSB first too, so we're good.
writeRegister(RX_ADDR_P0, address, addr_width);
writeRegister(TX_ADDR, address, addr_width);
//const uint8_t max_payload_size = 32;
//write_register(RX_PW_P0,rf24_min(payload_size,max_payload_size));
writeRegister(RX_PW_P0, payload_size);
}
void Nrf24l01::setAddressWidth(uint8_t a_width)
{
if (a_width -= 2)
{
writeRegister(SETUP_AW, a_width % 4);
addr_width = (a_width % 4) + 2;
}
}
void Nrf24l01::maskIRQ(bool tx, bool fail, bool rx)
{
uint8_t config = readRegister(NRF_CONFIG);
/* clear the interrupt flags */
config &= ~(1 << MASK_MAX_RT | 1 << MASK_TX_DS | 1 << MASK_RX_DR);
/* set the specified interrupt flags */
config |= fail << MASK_MAX_RT | tx << MASK_TX_DS | rx << MASK_RX_DR;
writeRegister(NRF_CONFIG, config);
}
uint8_t Nrf24l01::getStatus()
{
txbuf[0] = NOP;
beginTransaction();
spi.xmit(1, txbuf, 1, rxbuf);
endTransaction();
return rxbuf[0];
}
uint8_t Nrf24l01::readRegister(uint8_t reg)
{
txbuf[1] = NOP;
beginTransaction();
spi.xmit(2, txbuf, 2, rxbuf);
endTransaction();
return rxbuf[1];
}
uint8_t Nrf24l01::writeRegister(uint8_t reg, const uint8_t *buf, uint8_t len)
{
txbuf[0] = W_REGISTER | (REGISTER_MASK & reg);
beginTransaction();
spi.xmit(1, txbuf, 1, rxbuf);
spi.xmit(len, (unsigned char *)buf, 0, NULL);
endTransaction();
return rxbuf[0];
}
uint8_t Nrf24l01::writeRegister(uint8_t reg, uint8_t value)
{
txbuf[0] = W_REGISTER | (REGISTER_MASK & reg);
txbuf[1] = value;
beginTransaction();
spi.xmit(2, txbuf, 1, rxbuf);
endTransaction();
return rxbuf[0];
}
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
uint8_t Nrf24l01::readPayload(void *buf, uint8_t data_len)
{
uint8_t status;
uint8_t *current = reinterpret_cast<uint8_t *>(buf);
if (data_len > payload_size)
data_len = payload_size;
uint8_t blank_len = dynamic_payloads_enabled ? 0 : payload_size - data_len;
beginTransaction();
txbuf[0] = R_RX_PAYLOAD;
spi.xmit(1, txbuf, 1, rxbuf);
status = rxbuf[0];
txbuf[0] = 0xf;
;
while (data_len--)
{
spi.xmit(1, txbuf, 1, rxbuf);
*current++ = rxbuf[0];
}
while (blank_len--)
{
spi.xmit(1, txbuf, 1, rxbuf);
}
endTransaction();
return status;
}
void Nrf24l01::read(void *buf, uint8_t len)
{
// Fetch the payload
readPayload(buf, len);
//Clear the two possible interrupt flags with one command
writeRegister(NRF_STATUS, (1 << RX_DR) | (1 << MAX_RT) | (1 << TX_DS));
}
if (enabled)
{
writeRegister(FEATURE, readRegister(FEATURE) | (1 << EN_DPL));
writeRegister(DYNPD, readRegister(DYNPD) | (1 << DPL_P5) | (1 << DPL_P4) | (1 << DPL_P3) | (1 << DPL_P2) | (1 << DPL_P1) | (1 << DPL_P0));
}
else
{
writeRegister(FEATURE, readRegister(FEATURE) & ~(1 << EN_DPL));
writeRegister(DYNPD, readRegister(DYNPD) & ~((1 << DPL_P5) | (1 << DPL_P4) | (1 << DPL_P3) | (1 << DPL_P2) | (1 << DPL_P1) | (1 << DPL_P0)));
}
if (enabled)
{
writeRegister(FEATURE, readRegister(FEATURE) | (1 << EN_DYN_ACK));
}
else
{
writeRegister(FEATURE, readRegister(FEATURE) & ~(1 << EN_DYN_ACK));
}
if (enable)
writeRegister(EN_AA, 0b111111);
else
writeRegister(EN_AA, 0);
}
void Nrf24l01::setAutoAck(uint8_t pipe, bool enable)
{
if (pipe <= 6)
{
uint8_t en_aa = readRegister(EN_AA);
if (enable)
{
en_aa |= (1 << pipe);
}
else
{
en_aa &= ~(1 << pipe);
}
writeRegister(EN_AA, en_aa);
}
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
uint8_t Nrf24l01::writePayload(const void *buf, uint8_t data_len, const uint8_t writeType)
{
data_len = rf24_min(data_len, payload_size);
uint8_t blank_len = dynamic_payloads_enabled ? 0 : payload_size - data_len;
//printf("[Writing %u bytes %u blanks]",data_len,blank_len);
//IF_SERIAL_DEBUG( printf("[Writing %u bytes %u blanks]\n",data_len,blank_len); );
beginTransaction();
txbuf[0] = writeType;
spi.xmit(1, txbuf, 1, rxbuf);
spi.xmit(data_len, (unsigned char *)buf, 0, NULL);
txbuf[0] = 0;
while (blank_len--)
{
spi.xmit(1, txbuf, 0, NULL);
}
endTransaction();
return rxbuf[0];
}
uint8_t Nrf24l01::flushRx(void)
{
txbuf[0] = FLUSH_RX;
beginTransaction();
spi.xmit(1, txbuf, 1, rxbuf);
endTransaction();
return rxbuf[0];
}
/****************************************************************************/
uint8_t Nrf24l01::flushTx(void)
{
txbuf[0] = FLUSH_TX;
beginTransaction();
spi.xmit(1, txbuf, 1, rxbuf);
endTransaction();
return rxbuf[0];
}
Nrf24l01 nrf24l01;